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Fast computation of radio wave propagation effects
Thomas Mejstrik∗, Taulant Berisha†, Sebastian Woblistin‡

Abstract—UAV operations are quickly gaining ground due
to rapid global market penetration. While on one hand, novel
technologies that bridge communication networks to aviation
industry are yet to be explored, on the other hand, their
development requires highly scalable systems to enable BVLoS
missions. This requirement imposes a big bottleneck in terms
of computation complexity. This paper presents a method for
fast computation of multiple diffraction of radio waves over
knife-edge obstacles based on the Deygout technique and some
offline computation steps, including a ground profile analysis.
No rigorous results for such an analysis are known yet. We
prove that this algorithm is equivalent to the original Deygout
algorithm for all non-line-of-sight points, and show heuristics
confirming that it is mostly applicable in the line-of-sight case.
With small modifications our method is also applicable to the
Epstein-Peterson technique and the Giovanelli technique.

Index Terms—Estimation, Diffraction, Electromagnetic wave
propagation, Algorithms, Mobile communication

I. INTRODUCTION

D elivery of small packages, including medical supplies,
fire fighting support and infrastructure inspection, repre-

sent great commercial potential for communication providers.
Due to the growth in the unmanned aerial vehicle (UAV) mar-
ket, cellular networks are playing a key role to facilitate and
enable beyond visual line-of-sight (BVLoS) operations [1]. In
this regard, safety authorities and air traffic regulators have
identified the availability of a command & control (C2) link
as a prerequisite for integration of UAVs into the airspace [2],
[3]. C2 link owns exclusive responsibility to enable such
operations and represents a critical chunk to perform reliable
data delivery.

While on one hand, cellular operators want to keep full
control of their network in 3D airspace – similarly as to terres-
trial communications, on the other hand due to safety reasons,
air traffic regulators must be aware of UAV’s flight mission
and telemetry data, as well as command-and-control data.
Therefore, an interface enabling data exchange between the
two parties is a required linkage. To enable BVLoS UAV op-
erations, unmanned aircraft system traffic management (UTM)
authority has defined several tasks among which software
systems and data exchange protocols are key factors yet to
be developed [4].

To our best of knowledge, the only solution in market
that serves as a bridge connection between aviation industry
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Austria; email: tommsch@gmx.at
†Dimetor GmbH, Wiedner Hauptstraße 24/15, 1040 Vienna, Austria; email:

taulant.berisha@dimetor.com
‡Dimetor GmbH, Wiedner Hauptstraße 24/15, 1040 Vienna, Austria; email:

sebastian.woblistin@dimetor.com

and cellular operators is AirborneRF [5]. AirborneRF takes
into account both national airspace control and the radio
coverage delivered by the cellular network in real-time to
control the UAV within a safe 3D corridor and reliably deliver
C2 messages.

A. Computation complexity

An important aspect in cellular communication systems and
development of novel technologies is computational complex-
ity. Different to conventional systems, aviation management
systems will require connectivity data nearly in real time.
Development of efficient software functions and enabling reli-
able data exchange requires development of novel algorithms
that run swiftly on the stack. Computation of radio wave
propagation effects, such as small-scale fadings, diffraction,
scattering, refraction, and reflections demand huge memory
capacity, and thus, challenge parameter estimation for real-
time applications. In particular, multiple diffraction of radio
waves over several obstacles from a given ground profile
requires development of fast computation techniques. Yet,
no rigorous results are known in literature. To tackle this
problem, we propose an offline computation step combined
with a revised Deygout algorithm, both based on the Deygout
technique.

B. Diffraction

Many classical approximations, like Bullington, Epstein-
Peterson, Deygout, Giovanelli, for the computation of the
diffraction loss of radio waves are built upon the so-called
single knife-edge case [6]–[11].1 A knife-edge, depicted in
Figure 1, is an infinitely thin obstacle with infinite width; i.e.
it extends infinitely into and out of the page. Consequently, the
received energy decays due to lower number of rays being able
to reach the receiver. Therefore, some of the rays radiated from
the transmitter will not reach the receiver. However, according
to the Huygens–Fresnel principle, each point at the wave-front
can be considered as a secondary source of wavelets [15],
which combine to form waves propagating toward the receiver
to the right of the screen, even if there is non-line-of-sight
(NLoS) between the transmitter and the receiver.

C. Organization

In Section II we present the formulas for the single knife-
edge diffraction case and derive some useful properties. In
Section II-A we prove the main Lemma II.6 of the paper

1Note though, in recent years new fast methods to compute the diffraction
loss arose due to the advent of GPGPUs, making use of ray tracing and
machine learning techniques, see e.g. [12]–[14].
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giving rise to useful Corollaries, presented in Section II-A
and II-B, which we base our revised Deygout algorithm on.
In Section III we present the Deygout algorithm and the
main statements for our revised algorithm in Theorems III.4
and III.5, Remark III.7 and Algorithm III.9. At the end we
close the paper in Section IV.

II. SINGLE KNIFE-EDGE DIFFRACTION

The attenuation caused by a knife-edge shaped obstacle can
be computed by [16, Chapter 4.2]

J(ν̃) = −20 log10 F (ν̃) [dB], (1)

where the Fresnel-Kirchhoff parameter ν̃, depending on the
wavelength λ and the geometric parameters ãO, d̃R, d̃O,
defined in Figure 1, is essentially the square-root of a first-
order approximation of the difference between the lengths of
the path (T ) − (O) − (R) going over the tip of the obstacle
and the LoS path (T )− (R), see Figure 1. It is given by

ν̃ = ãO

√
2d̃R

λd̃O(d̃R − d̃O)
, (2)

and F is a Fresnel integral given by

F (ν) =
1 + i

2

(∫ ∞
ν

cos
r2π

2
dr − i

∫ ∞
ν

sin
r2π

2
dr

)
. (3)

To derive the ν-parameter for the case when the altitude of
the receiver aR is non-zero, and under the assumptions

aO � dO, aR � dR, (4)

defined in Figure 1, we substitute in Equation (2),
y

dO
=
aR
dR

,

ãO = aO − y, d̃O = dO, which gives rise to Definition II.1.

Definition II.1. Given an obstacle O = (dO, aO) and a
receiver R = (dR, aR), 0 < dO < dR, we define the ν-
parameter by

ν(O,R) = ν(dO, aO, dR, aR) =
aOdR − dOaR√
dRdO(dR − dO)

, (5)

where we dropped the constant factor
√
2/λ silently to make

the problem frequency independent.
Furthermore, if not stated otherwise, we assume the trans-

mitter to be located at the origin, i.e. T = (0, 0).

Definition II.2. For ν > −0.78 the function JITU is an
approximation of J = −20 log10 F defined by [17, Equa-
tion (31)]

JITU (ν) = 6.9+20 log10

(√
(ν − 0.1)2 + 1 + ν − 0.1

)
. (6)

For ν ≤ −0.78 we set JITU ≡ 0.

See Figure 2 for a plot of the functions J and JITU . Since
JITU is monotone, it suffices to study the behaviour of the
ν-parameter to make qualitative statements about the single
knife-edge diffraction model and models derived from the
single knife-edge diffraction model.

Lemma II.3. The function JITU is strictly monotone increas-
ing for ν > −0.78.

T

R

O

dO
dR

aR

aO

Õ

d̃O

d̃R

ãO

y

Fig. 1. T : Transmitter, R: Receiver, O: Obstacle of knife-edge type.
Drawn in grey is the real setting, drawn in black the approximated one.

Fig. 2. The function J (dashed black line) and its approximation JITU (solid
grey line) as defined by (1) and (6).

Proof.

∂νJITU |ν =
200 log10 e√

100ν2 − 20ν + 101
> 0 for all ν ∈ R

A. Linearly moving receiver

In this chapter we lay the mathematical foundation to show
that, in the generic case, the maximum attenuation caused by
diffraction is attained on the boundary of a given region, in
particular if the receiver is located on the ground.

Since the diffraction effects behave qualitatively different
for line-of-sight (LoS) and non-line-of-sight points, we define
the following vocabulary.

Definition II.4. We say a point is LoS if there is line-of-sight
between the transmitter and the point. We say a point is NLoS
if it is not LoS.

Using the ν-parameter one obtains a simple characterisation
of LoS points.

Lemma II.5. Given an obstacle O = (dO, aO) and a point
R = (dR, aR). The point R is LoS if ν(O,R) < 0. The point
R is NLoS if ν(O,R) ≥ 0.2

2The choice that a point R with ν(O,R) = 0 is NLoS is high-handed but
motivated by Lemma II.6.
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Proof. Since the denominator of the ν parameter is always
positive, its sign is defined by aOdR − dOaR, which proves
the claim.

We now prove a very useful lemma, which allows us to
construct our inverse Deygout algorithm in Section III-A.

Lemma II.6. The ν-parameter (corresponding to one fixed
obstacle) has no local non-negative maxima on any straight
line.

Proof. Given an obstacle O = (dO, aO), dO > 0. We first
consider the case when the line is vertical. For fixed dR, 0 <
dO < dR, Equation (5) becomes

ν(aR) =
aOdR√

dRdO(dR − dO)
− dO√

dRdO(dR − dO)
aR, (7)

which is a linear function, and thus, proves the claim.
Now let g(x) = g0 + g1x. We define

νg(x) =
aOx− dOg(x)√
xdO(x− dO)

=
aOx− dO(g0 + g1x)√

xdO(x− dO)
. (8)

By Lemma II.5, a point (x, g(x)) is NLoS if and only if
ν̃g(x) ≥ 0. Let B ≥ 0, any non-negative, NLoS, local maxima
of ν̃g satisfies 

νg(x) ≥ B (9a)
ν′g(x) = 0 (9b)
ν′′g (x) ≤ 0. (9c)

This system simplifies under the assumption 0 < dO < x to
aOx ≥ B

√
dOx(x− dO) + dO(g0 + g1x) (10a)

x(dOg1 + 2g0 − aO) = dOg0 (10b)
(8g0 + dOg1 − aO)dOx− 4(2g0 + dOg1 − aO)x2 ≤

3d2Og0
(10c)

Equations (10c) and (10b) yield dOg0 ≥ 5g0x which is only
possible if g0 ≤ 0, since 0 < dO < x. Equations (10a)
and (10b) yield B ≤ 2g0

√
x−dO
dOx

, which is only possible if
B ≤ 0, since 0 < dO < x and g0 ≤ 0. By assumption B ≥ 0,
and thus, B = 0.

Now, if B = 0, then 0 ≤ g0 ≤ 0, and thus, a0 ≥ d0g1
which is exactly the case between NLoS and LoS which we
defined to be NLoS.

Example II.7. The NLoS condition, i.e. the non-negativity
of the local extrema or the condition B ≥ 0 in the proof
of Theorem II.6, is a necessary condition as the following
example shows. Indeed, for the obstacle O = (1,−5/2) and
the linear function h(x) = −1 − x the function ν̃h attains a
local maxima −

√
2 at x = 2, and the corresponding point

(2, h(2)) is LoS.

Lemma II.6 gives rise to some useful Corollaries.

Corollary II.8. Given an obstacle O = (dO, aO), dO > 0,
and a piece-wise linear function r(x) defined on x > dO. The
function νr(x) = ν(dO, aO, x, r(x)) has non-negative local
maxima only at the end points of the line segments of the
function.

Due to the symmetry of Equation (5) of the ν-parameter, a
dual statement for linearly moving obstacles holds.

Corollary II.9. Given a receiver R = (dR, aR) and a piece-
wise linear function o(x) defined on 0 < x < dR. The function
νo(x) = ν(x, o(x), dR, aR) has non-negative local maxima
only at the end points of the line segments of the function.

Since we are not restricted to move on straight lines only,
Corollary II.10 follows.

Corollary II.10. Given an obstacle O = (dO, aO), dO > 0,
a closed, non-empty domain D ⊆ R2, dx > dO for all d =
(dx, dy) ∈ D, such that there exists d̃ ∈ D with ν(d̃) > 0.
Then, the ν-parameter attains its maximum at ∂D.

Proof. Assume there exists d◦ ∈ D◦ such that ν(d◦) =
maxd∈D ν(d). By assumption, ν(d◦) > 0, i.e. d◦ is NLoS.
Thus, there exists a straight line g through d◦ which is still
contained in D◦. Therefore, the function νg attains a local
maximum which is a contradiction to Theorem II.6.

B. Multiple obstacles

In the next few corollaries we are interested in the question,
which of multiple obstacles yields the largest ν parameter,
respectively diffraction loss.

Definition II.11. Given a set of obstacles Oj = (dOj
, aOj

),
j = 1, . . . , J and a receiver R = (dR, aR) with dOi < dOj <
dR for all i < j. We say Oi is a main obstacle for R if
ν(Oi, R) ≥ ν(Oj , R) for all j = 1, . . . , J .

An obstacle shadowed by other obstacles cannot be a main
obstacle if the receiver is NLoS.

Corollary II.12. (a) There does not exist a configuration such
that for three obstacles O1 = (dO1

, aO1
), O2 = (dO2

, aO2
),

O3 = (dO3 , aO3), and a transmitter R = (dR, aR), the
following holds true:

0 < dO1
< dO2

< dO3
< dR

aO2
<

aO1
(dO3

−dO2
)+aO3

(dO2
−dO1

)

dO3
−dO1

0 < ν(O1, R) < ν(O2, R) ∧ 0 < ν(O3, R) < ν(O2, R)

.

In other words, the main NLoS obstacle is always on the
upper boundary of the convex hull of the points defined by
the transmitter, obstacles and the receiver.
(b) If the NLoS condition is dropped, then (a) is false.

Proof. The second condition states that the height of the
second obstacle is below the line defined by obstacles O1 and
O2. Therefore, by Corollary II.9, ν(O2, R) < max{ν(O1, R),
ν(O2, R)}.
(b) Given O1 = (13, 1), O2 = (24, 10), O3 = (32, 20),

R = (33, 24). It follows that ν(O1, R) ' −3.01, ν(O2, R) '
−2.91 and ν(O3, R) ' −3.32, see Figure 3.

Remark II.13. A similar statement to Corollary II.12 (a)
also holds for LoS-points. Namely, given two obstacles O1 =
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T

R

O1 O2 O3

T R

O1 O2 O3

Fig. 3. (first) Illustration of counter example in Corollary II.12 (b).
(second) Illustration of obstacles defined in Remark II.13.

(dO1 , aO1), O2 = (dO2 , aO2), and a receiver R = (dR, aR),
there does not exists configuration such that

0 < dO1 < dO2 < dR
aR−aO2

dR−dO2
<

aO2
−aO1

dO2
−dO1

0 < ν(O2, R) < ν(O1, R)

or 
0 < dO1 < dO2 < dR
aO2
−aO1

dO2
−dO1

<
aO1

dO1

0 < ν(O1, R) < ν(O2, R)

.

Though, the use of such a theorem is limited, since the
“LoS-hull” is not convex in general. E.g. given O1 =
(1.5,−1.25), O2 = (3,−1), O3 = (4,−1), R = (5, 0), the
“LoS-hull” is the union of the two hulls (T −O1 −O2 −R)
and (T −O2 −O3 −R), and thus, not convex anymore.

The main obstacle of a receiver right above of another
receiver has either the same main obstacle or a main obstacle
which lies left of the main obstacle of the lower receiver.

Corollary II.14. (a) Given obstacles Oj = (dOj
, aOj

), j =
1, . . . , J and receivers R1 = (dR, aR1), R2 = (dR, aR2) such
that dOi < dOj < dR for all i < j and aR1 < aR2 . Then, the
main obstacle of R2 lies left of the main obstacle of R1, or it
is the same.

(b) A similar statement for horizontally moving receivers is
wrong.

Proof. (a) This follows directly from Corollary II.12 or from
Corollary II.14.

(b) Let O1 = (2, 15), O2 = (3.2, 20.5) and we fix our
receivers at height aR = 20.3. It is not hard to see that
limdR→dO2

ν(O2, R) = ∞, but, limdR→dO2
ν(O1, R) < ∞.

Furthermore, limdR→∞ ν(O2, R) =
aO2√
dO2

' 11.5, but

limdR→∞ ν(O1, R) =
aO1√
dO1

' 10.6.

Thus, for small enough and large enough dR (i.e. 3.2 <
dR < 3.20908 or dR > 3.48071), the main obstacle for a
receiver is O2, and, for all receivers in between, e.g. R2 =

(3.4, aR), ν(O1, R2) ' 3.24 > 2.78 ' ν(O2, R2) the first
obstacle is the main obstacle.

By Remark II.15, in the general case a configuration like
the one in the proof of II.14 (b) will either not occur or the ν-
parameter corresponding to the main obstacle is only slightly
larger than the ν-parameters of other obstacles. Thus, for real
world examples we may assume that II.14 (b) is true.

Remark II.15. By differentiating (8) with respect to x and
setting it to zero, one can see that the νg-parameter is strictly
monotone for all linearly moving receivers on a path g(x) =
g0 + g1x, x ≥ dO, outside of a cone defined by

g1 ∈

{ (
aO−g0
dO

, aO−2g0dO

)
if g0 ≤ 0(

aO−2g0
dO

, aO−g0dO

)
if g0 > 0

.

In particular, one boundary of the cone always passes the point
(dO, aO). Indeed, g0 + aO−g0

dO
x|x=dO = aO. If g0 ≤ 0 or

g0 > 0, then νg has a local maxima or minima, respectively.
Now assume that g lies in the cone and g0 < 0. We denote

the coordinates of the global maxima with (p, q), p > dO,
where

p =
−dOg0

aO − 2g0 − dOg1
,

q =2σ(aO − 2g0 − dOg1)

√
g0(aO − g0 − dOg1)

dO
.

After a normalization, p̂ = p
dO

and q̂ = q
l , where l =

limx→∞ νg(O, x) =
aO−dOg1√

dO
, these coordinates are indepen-

dent of a scaling of the axes. Plugging p̂ into q̂ gives

q̂ =
2
√
p̂2 − p̂

2p̂− 1
. (11)

The function q̂(p̂) is strictly increasing, positive and goes
quite rapidly towards its limit 1, approximately like q̂(p̂) '
1 − (p̂ + 0.075)−4. In particular, the global maxima q of the
function νg and the limit l differ by a large extent only in a very
small region right behind the obstacle, e.g. for the example in
the proof of Corollary II.14 (b) the region is [3.2 3.20908].
Furthermore, in this region the assumptions (4) used in the
derivation of the ν parameter are not satisfied. Mathematically
speaking this reduces to q̂ ' 0 ⇔ l ' −∞ is equivalent to
p̂ ' 1 ⇔ p ' dO. On the other hand, if the receiver is in a
region where the global maxima q is larger then the limit l,
Equation (11) tells us that the ratio l/q will be approximately
one. Mathematically speaking, p̂� 1⇔ p� dO is equivalent
to q̂ ' 1⇔ q ' l.

See Figure 4 for an instance of the cone, the corresponding
behaviour of the function νg and the function q̂(p̂).

III. DEYGOUT TECHNIQUE

Given some terrain profile p(x), x > 0, p(0) = 0, a
transmitter located at T = (0, p(0)) and a receiver located
at R = (dR, aR). We want to compute the diffraction loss at
the receiver caused by the terrain p(x).

Since this is a hard problem, one usually uses simplified
solutions. In this paper we use the Deygout diffraction loss
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T

O
R

x

a, νg

1 dO p

1

q

l

min
x>dO

νg(O, x)

lim
x→∞

νg(O, x)

p̂

q̂

1 2 3 4
0

1

Fig. 4. (first) Illustration of the cone in Remark II.15. Given an obstacle
O = (2, 4) and a receiver R moving on the line g(x) = 3+x/8. The shaded
region includes all straight lines starting from (0, 3), where the function νg is
not strictly monotone, i.e. it has a local minima. The two dotted lines visualize
the limit at infinity and the global minima of the function νg(O). The curved
line is a plot of the function νg(O). Note, the cone in this example is not
representative because dO � aO and this case is excluded in our derivation
of the formula of ν, see Section II.
(second) Plot of the function q̂(p̂), its limit 1 and an approximation 1− (p̂+
0.075)−4, the latter as a dashed line.

technique [7], although most of the developed techniques
also apply directly to the Epstein–Peterson and the Giovanelli
technique which also rely on the identification of main and
secondary obstacles. The Deygout model assumes the presence
of finitely many knife-edges between the transmitter and the
receiver. As above, the obstacle with the highest ν-parameter
is called the main-obstacle and its loss is calculated as for the
single knife-edge model. Additional obstacles are identified
between the transmitter and the top of the main obstacle, and
the top of the main obstacle and the receiver, with losses
calculated as for the single knife-edge model, see Figure 5.
The total loss is the sum of all computed losses.

This technique can be iterated infinitely many times. But,
no more than three obstacles should be considered with the
Deygout-technique since the diffraction loss of a solid half
plane, transmitter and receiver are sitting right on it, seems
to be approximately 20 dB corresponding to [18, Figure 5],
but the diffraction loss of four knife-edges with zero height is
already greater than 20 dB. Indeed, by (5), 4 · 20 log10(2) '
24.08 dB > 20 dB. Also, [19] suggests that only three obsta-
cles should be used.

Before we proceed, we present a simple implementation
computing the diffraction loss using the Deygout technique.

T R

Om

Ol
Or

Ox

Fig. 5. Illustration of Deygout-method. T : Transmitter, R: Receiver, Om:
Main obstacle, Ol: Left secondary obstacle, Or : Right secondary obstacle,
Ox: ignored obstacle

Algorithm III.1 (Vanilla Deygout algorithm). 3

Input Wavelength λ
Receiver R = (dR, aR)

Obstacles Oj = (dOj , aOj ), j = 1, . . . , J

Output diffraction loss L in dB

j := 0, jm := 0, νm := −∞ //Search main obstacle

while ++j < J and dOj < dR (12)
x = ν(Oj , R)

if x > νm then jm := j, νm := x

j := 0, jl := 0, νl := −∞ //Search left secondary obstacle

while ++j < jm (13)
x = ν(Oj , Ojm)

if x > νl then jl := j, νl := x

j := jm, jr := 0, νr := −∞ //Search right sec. obstacle

while ++j < J and dOj < dR (14)
x = ν(Oj −Ojm , R−Ojm)

if x > νr then jr := j, νr := x

L = J(
√

2
λνm) + J(

√
2
λνl) + J(

√
2
λνr) //Sum losses (15)

A. Offline computation

Our first aim is to replace a given terrain profile with
a finite set of knife-edges giving the same diffraction loss
for the profile and a specific diffraction model by doing
a ground profile analysis. So far, no rigorous mathematical
profile analysis was performed but only heuristics [20]. We
make the following light-headed definition.

Definition III.2. Given a diffraction model (in the following
the Deygout model), and a terrain profile, or short profile
(x, p(x)), x > 0, which is a piecewise linear function with
edge points P = {pn = (dn, an) : n = 1, . . . , N}, which
may be regarded as a set of knife-edges at positions pn, and
a domain V ⊆ R2 whose points lie all above the profile.

A set (of knife-edges) O = {Oj : j = 1, . . . , J} is a
representer for P and V if for all points (x, y) in the domain
V the diffraction loss at (x, y) computed with respect to P
and O is the same.

3The occurring function J is defined in (1).
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Remark III.3. The identification of a given profile with knife-
edges may not be optimal. It would certainly be worth to
consider rounded obstacles whose curvature is determined by
the given profile, see e.g. [21], [22].

The idea of the inverse Deygout algorithm is, to add all
profile points to the representer which are main and secondary
obstacles for any point (x, y) in the domain V above the
profile.

Theorem III.4. Given a profile P = {(dn, an) : n =
1, . . . , NP }, and a convex, bounded, polytope V ⊆ R2 with
vertices vn, n = 1, . . . , NV . Let νp(v) = ν(p, v) be the ν-
parameter of obstacle p ∈ P and vertex v ∈ V .

Define the sets Om, Ol, Or by

pm ∈ Om if max
v∈V

νpm(v) ≥ min
v∈V

νp(v)

for all p ∈ P
pl ∈ Ol if νpl(om) ≥ νp(om),

om ∈ Om and for all p ∈ P
pr ∈ Or if max

v∈V
νpr−om(v − om) ≥ min

v∈V
νp−om(v − om),

om ∈ Om and for all p ∈ P ,

where we defined v − o = (dv − do, av − ao).
Then the set Om ∪ Ol ∪ Or is a, not necessarily minimal,

representer for P and V for the Deygout diffraction model
and for all NLoS points.

The set Om contains all main obstacles of points in the
polytope V , the set Ol contains all secondary obstacles left
of a main obstacle om, The set Or contains all secondary
obstacles right of a main obstacle om which is why need to
shift the position of the transmitter and the obstacle by om.

Proof. This follows directly from Corollary II.10.

An algorithm based on Theorem III.4 has complexity
roughly O(4NPNV ), since for each section of the profile
P one has to compute 4 ν-parameters per vertex vn, n =
1, . . . , N . Since some computations are redundant one can
reduce the complexity easily to O( 52NPNV ). However, this
computation can be done offline, and thus, its complexity does
not matter much.

A bigger problem is that an algorithm based on Theo-
rem III.4 yields too many false positives, implying that the
representer is not minimal. Using Theorem II.14 (b), or better
Remark ??, we can reduce the number of false positives to a
large extent.

Theorem III.5. Assume that Corollary II.14 (b) is true for
our profile P and polytope V , where P and V is defined as
in III.4. If for some pm ∈ P

νpm(v) ≥ νp(v) for all p ∈ P , v ∈ V (16)

then Om = {pm} is the set of all main obstacles for all points
in V . Otherwise, define Om as in Theorem III.4. If for some
pr ∈ P

νpr−om(v − om) ≥ νp−om(v − om) for all p ∈ P , v ∈ V

T

O1

O2

O3

O4

O5

Fig. 6. Illustration of the indices corresponding to the convex hull as defined
in Algorithm III.9. Given Obstacles O1 = (2, 2), O2 = (3, 0), O3 = (4, 1),
O4 = (5, 0) and O5 = (6, 3), we get the the indices i1 = 0, i2 = 1, i3 = 1,
i4 = 3 and i5 = 1.

then {pr} is the set of all right secondary obstacles for the set
Om. Otherwise, define Or as in Theorem III.4. Furthermore,
define Ol as in Theorem III.4.

Then, the set Om ∪Ol ∪Or is a representer for P and V .

Remark III.6. Whenever Theorem III.4 returns a set of ob-
stacles which contradicts Corollary II.12, whenever for some
polytope (16) is not fulfilled, we can subdivide the polytope
into finitely smaller polytopes and compute a representer for
each smaller polytope.

B. Online computation

Given a representer O, we now discuss how to speed
up the computation of the diffraction loss. We first discuss
replacements for the function ν to reduce the computational
load inside the loops (12), (13), (14).

Remark III.7. To reduce the costs of the computation of the
ν-parameters,

ν =
aOdR − dOaR√
dRdO(dR − dO)

,

one may use the function ν2, defined by

ν2 =
x · |x|

dRdO(dR − dO)
, where

x = aOdR − dOaR,

to avoid the cost of taking the square root. To compute ν2
one has to do 5 multiplications and 2 summations. Clearly, all
statements in this paper holding for ν also hold for ν2.

It may also be useful to use the function ν5, taking 5
parameters, defined by

ν5 =
x · |x|

eRdO(dR − dO)
, where

x = aO − dOkR, eR =
1

dR
, kR = aReR.

To compute ν5 one has to do only 4 multiplications and 2
summations, since the computation of kR and eR can be done
outside the loop.

If the function ν is replaced by one of the above, one
has to replace the computation of the diffraction loss in (15)
accordingly, namely

L = J(ν̂m) + J(ν̂l) + J(ν̂r),where
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Fig. 7. Plotted is a random terrain in black, the vertices of the quadrilaterals defining the the positions of the receivers in light grey and the identified
representer as small circles. Furthermore, a receiver and transmitter as a large dot, the identified main, left and right obstacle as large circles and lines
connecting the considered obstacles in the computation of the main left and right obstacles (corresponding to the set of indices ij ) of the receivers as dotted,
dashed and dashed lines respectively.
Note though, the representer contains a lot of obstacles near to the transmitter, since all of these points are LoS with no obstacle in front of them. In a
productive implementation one may only consider obstacles with minimal ν parameter of −0.78.

ν̂◦ =
√

2
λ · σ(ν◦)

√
|ν◦|, ◦ ∈ {m, l, r}.

We now make use of Corollary II.12. which reduces the
number of ν parameters one has to compute.

Definition III.8. Given a transmitter T , obstacles O = {Oj :
j = 1, . . . , J} and let I be indices of the obstacles which
belong the upper boundary of the convex hull of T ∪ O. For
OJ we define iJ as the largest j, j < J , such that j ∈ IJ . If
there is no such value, we set it to zero.

Note that the indices ij from Definition III.8 can be precom-
puted, since they only depend on the obstacles. See Figure 6
for a visual explanation.

Algorithm III.9 (Revised Deygout algorithm). We only show
how to compute the main obstacle and its corresponding ν
parameter and do not give the full algorithm.

Input Wavelength λ
Receiver R = (dR, aR)

Obstacles Oj = (dOj
, aOj

), j = 1, . . . , J

Indices ij , j = 1, . . . , J

Output diffraction loss L in dB

Search J̃ ≤ J such that dOJ̃
< dR < dOJ̃+1

. (17)

j := J̃ , jm := 0, νm := −∞ //Search main obstacle

while j 6= 0

x = ν(Oj , R)

if x > νm then jm := j, νm := x

if νm > 0 then j := ij else j := j − 1 (18)
. . .

We shortly discuss the two main differences in the revised
algorithm, marked with (17) and (18).

(17) Instead with starting to search for the main obstacle
from the beginning, we start from the end. Thus, we first have

to search for the last obstacle OJ̃ which is still in front of the
receiver. Under our standing assumption that the obstacles Oj
are sorted with respect to dOj , this takes O(log J) operations.

(18) If our receiver is NLoS, then we can follow the
indices ij back to the transmitter on our search for the main
obstacle. If our receiver is LoS, and since we are not given
indices corresponding to the “LoS-convex hull”, we cannot
follow any faster path back to the transmitter and just advance
by one.

In Figure 8 one can see the efficiency of the revised Deygout
algorithm compared to the vanilla Deygout algorithm. One
can clearly see that the more points the profile has and the
hillier it is, the larger are the savings using the revised Deygout
algorithm.

IV. CONCLUSION

We illustrated and proved that the revised Deygout algo-
rithm is equivalent to the original Deygout algorithm, but has
much less computational complexity and memory consump-
tion.4 The methods are fully flexible and comprehensively
applicable to terrestrial and non-terrestrial wireless systems
such as 5G and beyond. Furthermore, the revised Deygout
algorithm can be efficiently integrated in real-time applica-
tions to perform diffraction loss estimations. We demonstrated
the applicability for BVLoS UAV operations as a use-case
scenario and also integrated the proposed methods into our
highly scalable software system. As a next step we investigate
whether a similar approach can be taken for scattering and
reflection effects.
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Profile N vanilla offline revised

402 801 97 34

202 401 55 8

102 201 27 20

39 75 9 7

27 53 19 14

14 23 9 9

Fig. 8. Number of operations needed to compute the diffraction loss using
various algorithms. We report the • approximate shape of the profile (the
ticks are located at 0m, 1000m, 2000m and −100m, 0m, 100m in the in
the x-direction and y-direction, respectively; the main, left and right obstacles
are marked as white dots, the identified representer is marked with black
dots, the transmitter and receiver are marked by × and are located at the
leftmost and rightmost point of the profile, respectively), • number of points
of the profile N , • diffraction loss J and the number of ν-parameters needed
to compute using the algorithms • vanilla Deygout, • vanilla Deygout using
offline computational steps and • revised Deygout using offline computational
steps.
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