
User Manual
m-, sequence-, subdivision-, tjsr- and tmisc-package for Matlab

(The t-packages)

Thomas Mejstrik

November 26, 2018

Contents
1 Installation 3

2 Overview over the included packages 4
2.1 Naming/calling conventions and data-format . 4
2.2 m-package . 5
2.3 sequence-package . 5
2.4 subdivision-package . 5
2.5 tjsr-package . 6
2.6 tmisc-package . 7
2.7 test-package . 8

3 subdivision-package 9
3.1 constructordering . 9
3.2 getS . 10
3.3 blf . 12
3.4 tile . 13
3.5 constructOmega . 13
3.6 constructV . 14
3.7 restrictmatrix . 15
3.8 transitionmatrix . 16
3.9 Example showing how to use the subdivision-package . 16

4 tjsr-package 18
4.1 findsmp . 18
4.2 tgallery . 20
4.3 invariantsubspace . 23
4.4 tjsr . 24
4.5 tjsr_getpolytope . 36
4.6 preprocessmatrix . 36

5 Test-drivers 38

6 Copyright 39
6.1 Cover-image . 39
6.2 m-, sequence-, subdivision-, tjsr- and tmisc-package . 39
6.3 The JSR toolbox [6] . 39
6.4 SeDuMi . 39

Bibliography 39

2

1 Installation
In order to install the m-, sequence-, subdivision-, tjsr- and tmisc-package do the following steps:

1. Copy the folder containing this file in the directory of your choice. If you change the name of the folder
do not put a name with space in it, for instance 'toolbox_t' and not 'toolbox t'.

2. Open Matlab, select Home > Set Path and add that folder (the folder containing this file) and the
sub-folders m, sequence, @sequence,subdivision.
You may also want to copy the folders test and @cell. These are not necessary but helpful. test contains
nice examples how to use the packages, @cell implements some operations for cell-arrays.
Manually you can use, in the command line, addpath <pathFolder> for this folder and its subfolders. In
order to save this for further Matlab sessions type savepath.

3. If you have not installed the packages SeDuMi, The JSR toolbox and the Gurobi solver1 yet, you must
install them too.
The archive containing this file may also contain the folders SeDuMi and JSR_louvain. Add these fold-
ers and all of its sub-folders to the Matlab-path, as described in step 2. If this archive does not con-
tain the SeDuMi and The JSR toolbox, or they are not working since they may be out-dated, they
can be downloaded from sedumi.ie.lehigh.edu and de.mathworks.com/matlabcentral/fileexchange/33202-
the-jsr-toolbox
To install the Gurobi solver, you must install it from the Gurobi page http://www.gurobi.com/ and follow
the instructions there. Academic users get free full-featured, no-size-limit versions of Gurobi to use in
class or for research.

4. The subdivision- and the tjsr-package need at least Matlab R2016b.
The sequence- and the subdivision-package depend on the Matlab Symbolic Math Toolbox and the
Signal Processing Toolbox but also run without the latter.
The sequence- and the tjsr-package depend on the Matlab Parallel Computing Toolbox but should
run without it.
If these toolboxes are not installed, they should be installed as described in the Matlab documentation.

5. The packages should now be available from any directory. Type setupt(1) to run a self-test of all
included functions. If the test fails, you may run setupm(1), setupsequence(1), setupsubdivison(1),
setuptjsr(1) or setuptmisc(1) to test the single packages.

The Toolbox has been tested on several OS’s (Windows, Linux, Mac) and Matlab versions (R2016b, R2017a,
R2017b, R2018b). However, if you encounter any problem please contact us at

tommsch@gmx.at.

1The packages also run without the Gurobi solver, but magnitudes slower.

3

http://sedumi.ie.lehigh.edu/?page_id=58
https://de.mathworks.com/matlabcentral/fileexchange/33202-the-jsr-toolbox
https://de.mathworks.com/matlabcentral/fileexchange/33202-the-jsr-toolbox
http://www.gurobi.com/
tommsch@gmx.at

2 Overview over the included packages
This is the documentation for the most important functions from the Matlab-packages m, sequence, subdivision,
tjsr and tmisc (summarized as the t-packages). The documentation for all functions (including those in this
manual) can be read with the Matlab-command help name, where name is the name of a function, e.g. help
tjsr. Some functions have an extended help-file which can be read with help name>fullhelp, e.g. help
tjsr>fullhelp.
The packages can be downloaded from http://tommsch.com and probably from Matlab’s file exchange.

2.1 Naming/calling conventions and data-format
• Most functions expect vectors in column format, contrary to Matlab’s default. I.e. if you want the column

vectors
[
1 2 3

]T , [7 8 9
]T written in one matrix, you must do it like this1

 1 7
2 8
3 9

 .

• All of the functions use name-value pairs to pass options. Some options do not need a value – those can
be used with or without a value. If used without a value or with the value 1 the option is enabled, if used
with the value 0, the option is disabled. Other arguments behind options which do not expect a value
lead to undefined behaviour.

• Optional arguments are written inside of square brackets, except when they are Options, i.e. all options
are optional.

• All names are singular and written in lower-case, with the only exception when a corresponding mathe-
matical symbol uses an upper-case letter.

• The variables idx and val in the source-code are used only locally. They are only valid for some lines of
code. They are re-used, since Matlab has no scope for variables.

• Since Matlab (nearly) has no types for variables, we denote parameters which shall be whole numbers
with the type integer, even if they are doubles in reality.

• The letters XX in the source-code, indicates things which should be changed.

1Internally most of the functions also use this data-format, in particular tjsr. Since sparse arrays in Matlab do not work well
with this data-format, in a future releas the function tjsr may change its data-format to Matlab’s default.

4

http://tommsch.com

2 Overview over the included packages

2.2 m-package
This package implements functions which generalize Matlab functions to n-arrays for arbitrary n ∈ N0, and give
them a consistent behaviour and interface. Mathematical functions which are defined for an arbitrary number
of arguments, but Matlab only accepts a small number (usually two), are also included in this package. All
functions should have the same input/output format as the original Matlab functions – at least for basic inputs.
Most of the functions do not rely on other packages. The function setupm performs a self-test of the package.
Some names of functions of this package collide with functions from the Matlab Mapping Toolbox, in partic-

ular plotm, surfm.
So far the following functions have been implemented: allm, anym, cart2sphm, convm, dec2base, factorialm,

ind2subm, isvectorm, kronm, lcmm, maxm, minm, nchoosekm ndimsm, onesm, padarraym2 parsem, plotm,
repmatm, sizem, sph2cartm, squeezem, summ, upsamplem, zerosm,
The package also includes a small set of functions, originally not included in Matlab. These are:

sph2cartm2 Transforms hypershperical to cartesian coordinates, assumes that the radius is one.
cart2sphm2 Transforms cartesian to hyperspherical coordinates, but does not return the radius.
parsem Parses varargin and is easier to use then Matlab’s parse3.
repcellm Works like repmat but returns cell-arrays.
setupm Performs a self-test of the m-package.

2.3 sequence-package
This package implements the vector space `0(Zs), s ∈ N. The design-goal is, that sequences behaves exactly as
arrays (whenever it makes sense) and code written for arrays can be used without modifications for sequences.
Unfortunately, direct referencing is not implemented yet. The package depends on the tmisc and m-package.
The package furthermore depends on the Matlab Symbolic Math Toolbox. It also uses functions from the

Matlab Signal Processing Toolbox but also runs without the latter.
The function setupsequence performs a self-test of the package.
So far the following functions are implemented: characteristic (χ), diffsequence (∇̃µ, ∇k), norm (‖ · ‖p),

supp (supp), symbol (the corresponding symbol), upsample (↑M), conv (∗), nnz, ndims, size, ref, and all
point-wise operations.

2.4 subdivision-package
This package implements functions for the work with subdivision schemes. Most of them can be used as a
black-box. The package depends on the m-, tmisc- and sequence-package.
The package furthermore depends on the Matlab Parallel Toolbox and Symbolic Math Toolbox. It also

uses functions from the Matlab Signal Processing Toolbox but also runs without the latter.
The function setupsubdivision performs a self-test of the package.

Important functions

constructordering Constructs the data-type ordering.
getS Returns subdivision operators in this packages format.
blf Plots the basic limit function of a multiple subdivision scheme.
tile Plots the attractor corresponding to a multiple subdivision scheme.
constructOmega Constructs the set Ω for a multiple subdivision scheme.
constructV Constructs a basis for the space Vk(Ω) [3].
restrictmatrix Restricts matrices to a subspace.
transitionmatrix Constructs transition matrices.

2Written by Notlikethat, stackoverflow.com/users/3156750/notlikethat, (2014) published under Common Creative Licence.
3Most functions in the other packages rely on that function, thus it is included here.

5

2 Overview over the included packages

num2ordering Computes number expansions for multiple multivariate number systems.
ordering2num Computes multivariate numbers corresponding to multiple number systems.
setupsubdivision Examples how to use the subdivision-package and self-test for the package.

Remaining functions

characteristic Returns the characteristic function of an index set.
compresscoordinates Returns an array representing the graph of a function.
constructdigit Constructs the usual digit set M [0, 1)s ∩ Zs.
constructOmega Constructs the set Ω [3].
constructU Constructs a basis for the space U [2].
constructVbar Constructs a basis for the space V̄k(Ω) [3].
dimVVbar Computes the dimension of spaces the Vk(Ω) and V̄k(Ω) [3].
daubechiesmask Returns the mask coefficients for Daubechies’ wavelet.
findperiod Searches for periodics in sequences.
isodering Tests whether input is an ordering.
isS Tests whether input is are subdivision operators.
isT Tests whether input are transition matrices.
multiplyS Concatenates subdivision operators.
mask2symbol Computes the symbol of a mask.
normalizeS Normalizes the values of the masks of subdivision operators.
ordering2vector Takes an ordering and returns it as a vector of certain length.
peter Removes randomly columns of arrays.
supp Computes the support of a mask.
symbol2mask Computes the masks from given symbols.
checktile Tests if an attractor is a tile.
tilearea Good heuristic test if an attractor has area one (for dimension 1 and 2).
vector2ordering Wrapper function for findperiod.

2.5 tjsr-package
This package implements functions to compute the JSR using the modified invariant-polytope algorithm. The
package depends on the m- and the tmisc-package and partly on the subdivision-package, but runs also without
the latter. The package furthermore depends on The JSR toolbox v1.2 (beta) [6], the SeDuMi-package v3.2 [10],
the Gurobi-Solver v8.0 and the Matlab Parallel Toolbox.
If the Gurobi-solver is not installed, Matlab-functions will be used instead and the algorithm will run some

magnitudes slower. The function setuptjsr performs a self-test of the package.

Important functions

findsmp4 Searches for s.m.p.-candidates. Various algorithms available.
invariantsubspace5 Searches for invariant subspaces of matrices.
setuptjsr Performs a self-test.
tgallery Returns sets of matrices, mostly used for tjsr.

4Copyright for algorithm 'genetic' by [1]. Copyright for algorithm 'gripenberg' by [6]
5Copyright for algorithm 'perm' and 'basis by [6]

6

2 Overview over the included packages

tjsr6 Computes the joint spectral radius of the set of matrices.
tjsr_getpolytope Returns the constructed invariant polytope.
preprocessmatrix Simplifies sets of matrices while preserving its JSR.

Remaining functions

binaryMat Returns the sets of binary matrices.
blockjsr Returns the JSR of block diagonal matrices.
codecapacity Given forbidden differences, returns matrices whose JSR is related to their capacity.
computepolytopenorm Computes the Minkowski-norm.
daubechiesmatrix7 Constructs matrices whose JSR is related to the Daubechies’ wavelets regularity.
estimatepolytopenorm Estimates the Minkowski-norm.
estimatejsr Rough estimate of the joint spectral radius.
chooseval Selects highest values of a vector.
intersectinterval Intersects intervals.
leadingeigenvector Returns all leading eigenvectors of matrices.
makeorderinggraph Constructs the graph given a partially ordered set.
makepositive Multiplies arrays such that its first non-zero entry is positive and its norm is preserved.
paritionatepolytope Partitions points in Rs into clusters of nearby points.
reducelength For patterns, removes repetitions and cycles it such that they have has smallest lexicographic

value.
removecombination Constructs a minimal set of cycles.
tbuildproduct_fast8 Constructs the product of matrices corresponding to a ordering.
tliftproduct8 Computes all products of length less or equal k.
tliftsemidefinite8 Computes semi-definite liftings of the matrices M
trho8 Computes the spectral radius of matrices.

All functions with prefix tjsr_ are subroutines of tjsr and are not documented here, since they are subject to
big changes, whenever the main function tjsr is changed.

2.6 tmisc-package
This package contains useful functions. Most other packages rely on this package. The package depends on
the m-package. The function setuptmisc performs a self-test of the package. The function setupt performs a
self-test of all packages.

Important functions

findperiod Searches for periodics of digit sequences.
grCenter Finds the centre of a tree.
grVerCover Computes all local minimal vertex-covers of a graph.
intersectspace9 Finds a basis of the intersection of N subspaces.
mixvector Constructs all possible combinations of values†.
normalize Normalizes matrices in various ways.

6Uses code from [6]
7Copyright for algorithm 'jung' by [6]. Copyright for algorithm 'gugl' by Nicola Guglielmi.
8Copyright by [6]
9Copyright by Ondrej Sluciak, ondrej.sluciak@nt.tuwien.ac.at

7

2 Overview over the included packages

removezeros Deletes zeros in arrays in various ways.
repcell Returns the replicated argument as a cell array.
searchincellarray Searches in cell arrays.
setplus Element-wise addition of vectors.
setuptmisc Performs a self-test.
setupt Performs a self-test of all described packages
tbuildProduct8 Constructs the product of matrices corresponding to a ordering.
uniquecell Same behaviour as unique, but for cell-arrays.
vdisp10 Compact (but sometimes ugly) display of (nested) objects.
vprintf10 Powerful version of sprintf with the additional specifier %v.

Remaining functions

cprintf11 Displays styled formatted text in the command window.
flatten Changes a nested cell array to a flat cell array.
identifymatrix Returns standard properties of matrices.
issquare Tests if an array is a (hyper)-square.
issym Tests if an object is symbolic.
iswholenumber Tests if an array contains only whole numbers.
limsup Computes the (cumulative) lim sup of vectors.
liminf Computes the (cumulative) lim inf of vectors.
lexicographic Orders vectors in a norm-lexicographic ordering.
nestedcellfun Wrapper function calling cellfun for each cell in a (nested) (cell-)array.
nondiag Extracts non-diagonal parts of 2-arrays and 2-cells.
num2color Assigns colours to integers.
savetocellarray Stores values in a cell array corresponding to a linear index-vector.
subsco Indexing of matrices by coordinate-vectors.
tif Ternary if operator.
unflatten Changes a flat cell array to a nested cell array.

2.7 test-package
This package consists of examples showing how to make use of the other packages. Most of the functions are not
written well and are poorly documented. Still it should be clear from the code how to use them. The package
includes

testchecktile Checks if the area of attractors is one.
testfindsmp Compares various algorithms finding s.m.p.-candidates.
testjsr Compares various algorithms computing the JSR.
testnorm Demonstrates how estimatepolytopenorm works.
testnorm2 Tests a strange difference-metric which could estimate the Minkowski-norm.
testnormdecay Constructs sequence of matrices with maximal spectral radius below some threshold.
testnumextremalpoints Generates random points and their convex hull.
testtjsr Tests the algorithm tjsr using example-matrices.

10Uses code by Yair Altman (2015) and code by Stefan, University of Copenhagen
11Copyright by Yair Altman (2015)

8

3 subdivision-package

3.1 constructordering
The ordering in which the subdivision operators are applied for multiple subdivision schemes, is defined by the
“data-type” ordering. An ordering is a representation of an infinite periodic sequence.1 It is stored as an 1x2 -
cell array, where the first cell is the non-periodic part, and the second cell is the periodic part. Each cell can
have an arbitrary number of rows.
The function constructordering takes vectors representing the non-periodic parts and the periodic parts of

an ordering and returns it as a cell array.

3.1.1 Syntax
[oo] = constructordering(oo1, [pp1, oo2, pp2, ...])

3.1.2 Input
oo1 vector of numbers, mandatory

The non-periodic part of the first row.
pp1 vector of numbers, optional

The periodic part of the first row.
ooi/ppi vector of numbers, optional

The periodic part of the ith row.

3.1.3 Output
oo ordering

The ordering defined by the input arguments.

3.1.4 Note
• If oo1 is an ordering, oo1 is returned unchanged.

• All periodic and non-periodic parts must have the same length.

• The number of arguments is either 1 or an even number.

3.1.5 Example Usage
• constructordering([1 2],[3 3]) returns {[1 2],[3 3]} which corresponds to the infinite sequence

1, 2, 3, 3, 3, 3

• The number 1
3 can be represented by constructordering([],[3]). Since orderings do not encode a

decimal point, this sequence could also stand for the number 3.333 · · · , etc..

1Thus the multiple subdivision schemes defined by this package can be seen as stationary schemes.

9

3 subdivision-package

3.2 getS
This function returns subdivision operators. These are cell arrays, each row describing on subdivision operator,
with entries

{ mask (a), dilation (M), digit-set (D), ..., name (n)}.

The variables are:

mask (a) n-array
Mask a of the subdivision operator.

dilation (M) n× n matrix
Dilation matrix M of the subdivision operator.

digit-set (D) n× |detM | matrix
Set of representatives D ' Zs/MZs.

name (n) string
Name of the subdivision operator. Is only used for displaying purposes.

In future releases of the package, data-fields may be added to subdivision-operators. The name will always be
the last entry in each row.
The function getS returns examples of subdivision operators in the described format.

3.2.1 Syntax
[S] = getS(dim || cellarray || 'name' || list, [options])

3.2.2 Input
dim integer

Returns all unnamed subdivision operators saved in the file.
cellarray cell-array {[a],M,[D],[n]} where a, M, D, n is as described above.

Takes a subdivision operator (or parts from it) and computes the missing variables. Only M is mandatory
and thus the cell array must be at least of size 1× 2.
If D is not given, D := MZs ∩ Zs, where s is the dimension of M . If a is not given a := χD, where χ is
the characteristic function.
If n is not given n := unnamed.

name string
Returns the named subdivision operator saved in the file with name name.

list name-value pairs of strings
The possible names are 'a' or 'mask', 'M' or 'dilation, 'D' or 'digit', 'n' or 'name'. The possible
values are as described above.

Only of this inputs can be used.

3.2.3 Options
'supp' Instead of the digit sets, the support of the masks is returned as the digit sets.
'Omega' Instead of the digit sets, the support of the masks minus the digit sets is returned as the digit sets.
'characteristic' Instead of the masks, the characteristic function of the digit sets is returned as the masks.
'nocheck' Disables basic checks of the data-integrity.
'bigcheck' Enables checks about necessary conditions of convergent subdivision operators.
'verbose',val integer, default: 1

Verbose level.

10

3 subdivision-package

3.2.4 Output
S cell array of subdivision operator(s)

3.2.5 Note
All subdivision operators in a cell array should be for the same dimension.

3.2.6 Possible values for name

The possible strings (among some other strings) are returned with the command gets('help'). The following
list is only a subset of all possible strings.

Univariate schemes

'1_all' Returns all named subdivision schemes of dimension 1.
'1_rand' Returns a random subdivision scheme of dimension 1.
'1_4point' The 4-point scheme a = 1

16

[
−1 0 9 16 9 0 −1

]
, M = 2.

'1_DD' The Dubuc-Deslauriers sch. a= 1
256

[
3 0 −25 0 150 256 150 0 −25 0 3

]
, M=2.

'1_strange_interpolatory' An interpolatory which does not fulfil a(0) = 1.
'1_Hassan_Dodgson_3point' The Hassan-Dodgson 3-point scheme a= 1

16

[
1 5 10 10 5 1

]
, M=3.

'1_balanced_ternary' The balanced ternary number system M = 3, D = {−1, 0, 1}.
'1_devil_stairs' A subdivision scheme whose basic limit function is the devil-stairs function.
'1_spline_binary-2' The second order B-Spline scheme.
'1_three_disjoint_Om' A scheme with has three disjoint invariant sets Ω [3].
'1_daubechies',n The nth Daubechies wavelet scaling function.
'1_cantor' A scheme whose attractor is the Cantor-set.

Bivariate schemes

'2_all' Returns all named subdivision schemes of dimension 2.
'2_rand' Returns a random subdivision scheme of dimension 2.
'2_sierp' A scheme whose attractor is the Sierpinski triangle.
'2_rqj43' Example from [9, Example 4.3].
'2_butterfly' The butterfly scheme.
'2_twindragon' Scheme whose attractor is the twindragon.
'2_twindragon' Scheme whose attractor is the flash.
'2_V0neqV0bar_1' Scheme where V0 6= V̄0 [3].
'2_superomega' Scheme whose super-tile is the cover-image.
'2_McLure' Non-integer scheme with self affine 4-tile.

Quadrovariate schemes

'4_cex_Pot97' Dilation matrix which does not posses a digit set such that the corresponding attractor is a
tile [8].

3.2.7 Example Usage
getS(2) Returns all unnamed subdivision operators of dimension 2. The returned set may be empty, if there

are no unnamed subdivision operators.
getS('2_butterfly') Returns the butterfly scheme.
getS('1_all') Returns all named subdivision operator of dimension 1.

11

3 subdivision-package

3.3 blf
This function plots the basic limit function of multiple subdivision schemes.

3.3.1 Syntax
[c, PM, xyzv, oo] = blf([oo], S, [options])

3.3.2 Input
[oo] ordering, optional

Defines the ordering in which the subdivision operators are applied. If oo is not given, a random ordering
is computed.

S subdivision operators (or something else)
The parameter S is passed to getS and the returned value is used.

3.3.3 Options
'diff',val 1× dim-vector or integer, default: 0

Computes (partial) derivatives (finite differences). If diff is a vector the given partial derivative is
computed. If diff is a scalar, then all partial derivatives of that order are computed.

'plot',cellarray cell array or scalar,default: {}
Arguments passed to plotm, e.g. {'Color','red'}. If plot = 0, nothing is plotted.

'verbose',val integer, default: 1
Verbose level.

'start' dim-array,default: δ0
Starting sequence.

'iteration',val integer, default: depends on S
Computation stops after iteration many iterations.

'maxiteration',val integer, default: 50
Maximum number of iterations.

'numpoint',val integer, default: 30000
Number of points in the output-sequence to be computed.

'maxnumpoint',val integer, default: 30000
Maximum number of points in the output-sequence to be computed.

3.3.4 Output
c dim-array or cell array of dim-arrays.

Iterated sequence, i.e. c = Soon · · ·Soo2Soo1(start). If diff is given and there is more then one partial
derivative of the demanded ordering, c is a cell array.

PM dim× dim matrix
Dilation matrix corresponding to the returned mesh.
There is a bug, and the returned matrix be the transposed.

xyzv dim+ 1×N matrix
Column vectors v containing the function values at the position xyz ∈ Rdim.

oo vector
Ordering used. Equals oo (Input) if given.

3.3.5 Example Usage
[c,PM,xyzv,So]=blf('2_butterfly','iteration',3,'diff',1)

12

3 subdivision-package

3.4 tile
Plots the attractor corresponding to a multiple subdivision scheme.

3.4.1 Syntax
[Q, oo] = tile([oo], S, [options])

3.4.2 Input
[oo] ordering, optional

The ordering in which the subdivision operators are applied
S subdivision operators

The subdivision operators

3.4.3 Options
'supertile',n integer

Computes the supertile instead of the attractor.
'verbose',val integer, default: 1

Verbose level.
'round',val integer or 1× 2-vector,default: 1e-2, 1e-12

If round is an integer, the same round value is used in each iteration. If round is a vector, the round
values are linearly interpolated.

'start',array dim-array, default: δ0
The starting set.

'digit' default: false
Computes iterated digit sets instead of the attractor.

'plot',cellarray cell array or scalar,default: {}
Arguments passed to plotm, e.g. {'Color','red'}. If plot = 0, nothing is plotted.

'iteration',val integer, default: depends on S
Computation stops after iteration many iterations.

'maxiteration',val integer, default: 50
Maximum number of iterations.

'numpoint',val integer, default: 30000
Number of points in the output-sequence to be computed.

3.4.4 Output
Q dim×N matrix

The computed attractor.
oo vector

Ordering used. Equals oo (Input) if given.

3.4.5 Example Usage
tile('2_frayed_squares','round',[.1 1e-2])

tile('1_cantor','digit')

tile([getS('2_rand'); getS('2_rand')],'supertile','iteration',10)

3.5 constructOmega
Constructs the set Ω as described in [3].

13

3 subdivision-package

3.5.1 Syntax
[Om] = constructOmega(S, [options])

3.5.2 Input
S cell array of subdivision operators

3.5.3 Options
'Omega',val matrix, optional, default: automatically computed

Starting set. If not given, a point is computed where to start from. In some cases, the algorithm may not
find a good starting point, and the returned set is not minimal.

'verbose',val integer, default: 1
Verbose level.

'lexicographic' default: false
Orders the output set lexicographically.

'stable' default: false
Does not order the set the output set.

3.5.4 Output
Om matrix

The set Ω.

3.5.5 Example Usage
constructOmega('2_butterfly','Omega',[2;2],'stable')

3.6 constructV
Constructs a basis for the space Vk(Ω), as described in [3].

3.6.1 Syntax
[V] = constructV(Om, [k] , [options])

3.6.2 Input
Om dim×N array of column vectors.

The set for which Vk shall be constructed
[k] integer or a vector of integers greater equal zero, optional

Index or indices k.

3.6.3 Options
'verbose',val integer, default: 1

Verbose level.
'01' Allows to give input Om as a logical array, e.g. constructV([1 0; 1 1; 1 0], 0, '01','verbose',2)

is equivalent to constructV([0 0; 1 0; 1 1; 2 0]' , 0,'verbose',2).

3.6.4 Output
V matrix (or cell array of matrices) of column vectors.

The basis (bases) for the space Vk. If k is empty, then all spaces Vk are computed for which dimVk > 0.

14

3 subdivision-package

3.6.5 Note
The functions constructOmegabar and constructU construct the spaces V̄k and Uk as described in [3]. They
have nearly the same interface as constructV, so they are not described in this manual. See the help of these
functions for more information.

3.6.6 Example Usage
Om=constructOmega('2_butterfly'); constructV(Om,1)

3.7 restrictmatrix
Restricts matrices to a subspace and checks whether the subspace is invariant or not, i.e. with the notation from
below,

TT =

[
TA ∗
NULL TR

]
= BASIS−1 · T · BASIS. (3.1)

3.7.1 Syntax
[TA, TT, TR, NULL, BASIS] = restrictmatrix(T, A, [options])

3.7.2 Input
T square matrix or cell array of square matrices

The matrices to be restricted
A rectangular matrix

Matrix with the columns of the subspace as basis

3.7.3 Options
'verbose',val integer, default: 1

Verbose level
'epsilon',val double,default: 10−12

The matrices are considered to be invariant if a norm of the residua NULL{i} is greater then dim ·epsilon.
'smallsize' Removes all columns of A (starting from the last column) without changing the rank of A.

3.7.4 Output
If the input T is a cell array, then the outputs TA, TT, TR and NULL are also cell arrays. BASIS is always a matrix.

TA dimA · dimA matrix (or cell array of)
Restriction of T to A

TT dimT · dimT matrix (or cell array of)
T in the basis of A complemented to a basis of RdimT .

TR dimT−A · dimT−A-matrix (or cell array of)
Lower right corner of matrix TT.

NULL dimT−A · dimA-matrix (or cell array of)
Lower left corner of TT. If T is A invariant, then NULL consists of zeros only.

BASIS dimT · dimT matrix (or cell array of)
Complemented basis of A to a basis of RdimT .

3.7.5 Example Usage
restrictmatrix([1 1 0; 0 1 1; 1 0 1],[1 -1 0; 0 1 -1]')

15

3 subdivision-package

3.8 transitionmatrix
Constructs transition matrices Td,Ω = (a(α − Mβ + d))α,β∈Ω where a are subdivision masks, M are dilation
matrices, d ∈ D ' Zs/MZs, all three taken from a set of subdivision operators, and Ω ⊆ Zs is an TZs invariant
set.

3.8.1 Syntax
[T, Om] = transitionmatrix(S, [options])

3.8.2 Input
S cell array of subdivision operators

3.8.3 Options
'Omega',val dim ·N integer matrix, default: is automatically constructed using constructOmega

Index set used for construction of the transition matrices.
'onlyindices' Function instead returns dim+#Ω×#Omega matrix with the indices used for construction

of the transition matrices (instead of the values of the mask a at the indices position).
'noflat' Function instead returns cell array of cell arrays, each corresponding to one subdivision operator.
'infindices' Entries of indices not element of the support of the masks, are replaced by ∞ instead of 0.
'colsum',val double, default: column-sum of the first column of the first transition matrix in T

Tests if the columns sum up to colsum.
'verbose',val integer,default: 1

Verbose level.

3.8.4 Output
T cell array of matrices

The transition matrices.
Omega The set Ω used to compute the transition matrices.

3.8.5 Example Usage
vdisp(transitionmatrix(1/4*[1 4 3]',2))

3.9 Example showing how to use the subdivision-package
This example computes the Hölder regularity of the stationary subdivision scheme given by the subdivision
operator S = (a,M), with mask a = 1

4

[
1 1 3 3

]
and dilation M = 2. We first generate the cell array

subdivision operators

S=getS('a',1/4*[1;1;3;3],'M',2);
%There is a bug in Matlab which throws an error for the command disp(S).
%Thus the semi-colon is important.

To plot the basic limit function we call

blf(S);

We next construct the transition matrices and restrict them to the invariant subspace V0. We also construct
the space V̄0. To apply the joint spectral radius approach to compute the regularity of subdivision-schemes, the
dimension of V0(Ω) and V̄0(Ω) must coincide.

16

3 subdivision-package

[T, Om]=transitionmatrix(S); %compute transition matrices and the set Omega
plotm(Om,'x') %plot the set Omega
V0=constructV(Om,0) %Construct space orthogonal to polynomial sequences
V0bar=constructVbar(Om,0); %Construct space of differences of delta
if(size(V0,2)~=size(V0bar,2));

fprintf('Set Omega is wrong.'); %Test ifV0==V0bar
end
TV0=restrictmatrix(T,V0); vdisp(TV0); %restrict transition matrices and display them

The last step is to compute the Hölder regularity using the modified invariant polytope algorithm.

[JSR, type]=tjsr(TV0);
al=-log(JSR)/log(2) %Hoelder regularity. The 2 comes from the dilation M=2.

17

4 tjsr-package

4.1 findsmp
This function searches for s.m.p.-candidates using various algorithms, these are: the modified Gripenberg algo-
rithm as described the acompanying paper and used by default, the Gripenberg algorithm as implemented in [6],
a standard brute force algorithm and the genetic algorithm as implement in [1]. All algorithms share the same
input and output format, thus this function can be used to easily compare them
It must be noted, that the modified Gripenberg algorithm is parallelised, whereas the others are not. The

genetic algorithm has a bug and sometimes reports wrong spectral radii and candidates. Gripenbergs algorithm
and the genetic algorithm only return one s.m.p.-candidate. Thus they are not suitable for finding smp-
candidates as needed for the (modified) invariant polytope algorithm.

4.1.1 Syntax
[cand, nearlycand, info] = findsmp(T, [algorithm], [options])

4.1.2 Input
T cell array of square matrices of the same size

The input matrices.
[algorithm] (optional), string

Algorithm to use:
'modifiedgripenberg' (default) Modified Gripenberg algorithm.
'gripenberg' Gripenbergs algorithm [4].
'bruteforce' Brute force algorithm.
'genetic' Genetic algorithm [1].

4.1.3 Output
cand cell array of column vectors

Ordering of the products with highest normalized spectral radius.
nearlycand cell array of column vectors

Orderings of products with nearly highest normalized spectral radius.
info struct

Additional info, depending on the used algorithm and options. May contain the following fields:
info.time double

Time in seconds needed for the computation.
info.jsrbound 1x2 vector

Bounds for the JSR.
info.graph Matlab graph object

All computed norms and spectral radii as directed graph.
info.count integer

Approximate number of computed matrices.

18

4 tjsr-package

4.1.4 Options
Options available for all algorithms

'verbose',val integer, default: 1
Defines the verbose level.

'maxtime',val double, default: ∞
Maximal runtime in seconds (checked at the beginning of each iteration).

'norm',handle function-handle, default: @norm
Used norm in the computation

Options for algorithm 'modifiedgripenberg'

'delta',val double, default: 0.99, (experimental, may be removed)
Delta used in the Gripenberg Algorithm. All products of matrices with normalized norm less than
ρc/delta, where ρc is the current upper bound for the JSR, are thrown away.

'N',val integer, default: depends on the size and number of matrices
Number of kept products in each step. If N = ∞, the algorithm behaves like Gripenberg’s algorithm.

'maxsmpdepth',val integer, default: ' 100
Maximal length of products searched for.

'JSR',val double, default: 0
Candidates to be found must have at least JSR spectral radius.

'searchonlyonecandidate' default: false
Searches until one candidate is found, maxsmpdepth is ignored. .

'sufficientbound',val double, default: ∞
Algorithm terminates if a candidate with bound higher than sufficientbound has been found.

'plot',string string, default: 0
Some plot output. If string = 'tree' a graph showing all computed orderings of products is plotted
and also saved in info.graph.

'nearlycandidate',val double, default: 0.99
Candidates with normalized spectral radius greater than
nearlycandidate*info.bounds(1) are considered as nearly-s.m.p.s.

'shortnearlycand',val double, default: 1
Removes all nearly-s.m.p.s whose ordering is longer than
shortnearlycand*maximal-length-of-s.m.p.-candidates.

'sparse',flag boolean, default: auto
Flag if the matrices are sparse.

'select',flag integer, default: 1
Strategy how to select new candidates.
0 (bad) Choose the N products with biggest norm.
1 (default) Choose the N/2 products with biggest and N/2 products with smallest norm.
2 (not so good) Choose N random products.

Options for algorithm 'genetic'

'popsize',int integer, default: 300, minimum:10
Population size.

'maxgen',int integer,default: 1000
Maximum number of generations.

'maxstall',int integer, default: 15
Maximum number of stalling iterations before increasing the maximum product length.

19

4 tjsr-package

'maxtotstall',int integer, default: 100
Maximum number of stalling iterations before terminating the algorithm.

'mutantprop',val double, default: 0.3
Mutation probability of a given product.

'muteprop',val double, default: 0.2
Mutation proportion of a given product.

Options for algorithm 'gripenberg'

'delta',val double, default: 0.99
Delta used in the Gripenberg Algorithm. All products of matrices with normalized norm less than
ρc/delta, where ρc is the current upper bound for the JSR, are thrown away.

'maxeval',val double, default: ∞
Maximum number of evaluations.

'maxtime',val double, default: ∞
Maximal time used for computation.

'maxsmpdepth',val double, default: 10
Maximal length of products searched for.

Options for algorithm 'bruteforce'

'minsmpdepth',val integer, default: 1
Minimal length of products.

'maxsmpdepth',val integer, default: 10
Maximal length of products.

'JSR',val , double, default: 0
Candidates must have at least JSR spectral radius.

'searchonlyonecandidate' default: false
Searches until one candidate is found, maxsmpdepth is ignored.

4.1.5 Example Usage
[c, nc, info] = findsmp([1 -1; 3 -2], [1 3; -1 -1], 'maxsmpdepth', 15)

[c, nc, info] = findsmp([1 -1; 3 -2], [1 3; -1 -1], 'plot', 'tree')

[c, nc, info] = findsmp([1 -1; 3 -2], [1 3; -1 -1], 'gripenberg')

4.2 tgallery
This function provides example-sets of matrices. It is useful for testing algorithms and other purposes. It also
makes use of Matlab´s gallery.

4.2.1 Syntax
[val] = tgallery(what, dim, N, k, [options])

4.2.2 Input
what string, mandatory

Controls the return value.
dim integer, mandatory in most cases

Dimension of matrices. In some cases
N integer, mandatory in most cases

Number of matrices.

20

4 tjsr-package

k anything, mandatory in some cases
Number of matrices.

The variables may have another meaning in some cases, as described below.

4.2.3 Options
'verbose',val integer, default: 1

Verbose level.
'seed',val integer or struct returned by rng, default: empty

Seed for random number generator. If seed is set, Matlab’s random number generator has the same state
before and after execution of the function.

'sparse',val double, default: 0
Returns sparse matrices

'sparse',val double, default: 0
Returns sparse matrices

'int' flag
Returns integer matrices.

'pos' flag
Returns matrices with positive entries.

'rho' flag
Returns matrices with spectral radius 1.

'norm' flag
Returns matrices with 2-norm 1.

4.2.4 Output
val cell array of square matrices

The returned matrices.

4.2.5 Notes
Most of the options preserve no special properties of the matrices. E.g.: The entries in the matrix returned by
tgallery('rand_gauss',10,1,'pos') do not have a Gaussian distribution anymore.

4.2.6 Possible values for what and their mandatory arguments
We list all possible values for what, followed by the mandatory parameters. For example,

tgallery('rand_pm1', 2, 1, 'seed', 10)

returns a cell array with one element, containing the 2× 2 matrix[
0 0
1 −1

]
.

Random matrices

'rand_stochastic',dim,N Column-stochastic matrices.
'rand_doublestochastic',dim,N Double-stochastic matrices.
'rand_stochastic_neg',dim,N Column-stochastic matrices with positive and negative values.
'rand_doublestochastic_neg',dim,N Double-stochastic matrices with pos. and neg. values.
'rand_TU',dim,len Transition matrices of a subdivision scheme in Rdim with arbitrary dilation matrix and

mask with lendim non-zero entries, restricted to the subspace U as defined in [2].

21

4 tjsr-package

'rand_TV0', dim, len Transition matrices of a subdivision scheme in Rdim with arbitrary dilation matrix
and mask with lendim non-zero entries, restricted to the subspace V0 as defined in [3].

'rand_pm1',dim,N Random matrices with values -1, 0, 1.1

'rand_bool',dim,N Random matrices with values 0, 1.1

'rand_gauss',dim,N Matrices with normally distributed values …
'rand_equal',dim,N Matrices with equally distributed values in [−1, 1] …
'rand_unitary',dim,N Unitary matrices.
'rand_zero',dim,N Matrices with spectral radius 0.
'rand_colu_0',dim,N Matrices with pos. entries, column-norm=1 and i.i.d. singular values.
'rand_colu_1',dim,N Matrices with non-neg. entries, column-norm=1 and i.i.d. singular values.
'rand_corr_0',dim,N Correlation matrices with pos. entries and i.i.d. singular values.
'rand_corr_1',dim,N Correlation matrices with non-neg. entries and i.i.d. singular values.
'rand_hess',dim,N Orthogonal upper Hessenberg matrices.
'rand_orthog_1' Orthogonal matrices with complex leading eigenvalue.
'rand_orthog_2' Orthogonal matrices with complex dual leading eigenvalue.

Matrices from applications

'binary',dim,N,k Matrices with linear entries which equal the number k in base 2. If there exists k̃ < k
such that the returned set for k̃ would be the same, the function returns the empty set.

'binary2',dim,N,k The same as 'binary', but if there exists k̃ < k such that the returned set for k̃ would
have the same JSR, the function returns the empty set.

'cex' Pair of 2x2 matrices which has no s.m.p. [11], returned approximately with 61 digits.
'code',C (C is a cell array of row-vectors) Matrices whose JSR is related to the capacity of a code with

forbidden differences C. See codecapaciy for more information.
'daub',dim Matrices whose JSR is closely related to the Hölder-exponent of Daubechies’ wavelets.
'euler',dim Matrices in connection with the Euler partition function [5].

'nondominant' Set {
[

1 1
0 1

]
, 4

5

[
1 1
0 1

]
} with non-dominant s.m.p..

Matrices from papers

'grip_p52' Matrices { 1
5

[
3 0
1 3

]
, 1

5

[
3 −3
0 −1

]
} from [4, p. 52].

'grip_p45' Matrices {
[

0 1
0 0

]
,

[
0 0
1 0

]
} from [4, p. 45].

'morris_p3' Matrices {
[

2 2
0 0

]
,

[
1 1
1 1

]
} from [7, p. 3].

'prot2012_p35' Example for a Pascal rhombus [5, p. 35].
'prot2012_p40' Example from [5, p. 40].
'prot2012_p43' Example for a Euler binary problem [5, p. 43].
'prot2012_p44' Example for a Euler ternary problem [5, p. 44].
'prot2016' Matrices from a subdivision scheme [5, p. 33, p. 35, p. 50].

'mejstrik_longsmp',x Matrices C̃x = {
[

1 1
0 1

]
,

[
0 0
x 0

]
} with s.m.p.-length ≈ e · x.

1rand_pm1 and rand_bool are good example to test the balancing of multiple trees in the invariant polytope algorithm.

22

4 tjsr-package

'mejstrik_119́ Matrices X = {


15

92

−73

79
56

59

89

118

 ,


−231

241

−143

219
103

153

−38

65

} with s.m.p.-length 119.

'mejstrik_119_2' Matrices X = {


2936824268245481

18014398509481984

−1040403609775579

1125899906842624
8548815905856585

9007199254740992

6793656059295549

9007199254740992

 ,


−8633497502531381

9007199254740992

−2940665869269935

4503599627370496
6063507393887449

9007199254740992

−5266479768915639

9007199254740992

} with s.m.p.-length 119.

4.2.7 Example Usage
tgallery('rand_sparse_pos',100,2,[],0.01)

tgallery('rand',4,2,100)

4.3 invariantsubspace
Searches for invariant subspaces of matrices M ∈ M, i.e. a change of basis B such that all matrices M ∈ M
have block-triangular form in basis B. Uses three different algorithm, permTriangul and jointTriangual
from [6] as well as an implementation of [2]. The returned matrices still may have invariant subspaces which
can be found found using this algorithm.

4.3.1 Syntax
[Mret, B] = invariantsubspace(M, ['type'], [options])

4.3.2 Input
M cell array of matrices

The matrices.
['type'] (optional), string, default: 'auto'

'none' Nothing happens, Mret={M}, B=eye(dim).
'perm' Tries to find a permutation such that all M{i} are in block-diagonal form.
'basis' Tries to find a basis such that all M{i} are in block-diagonal form.
'trans' If M are transition matrices coming from a subdivision-scheme, the algorithm tries to find

subspaces of differences U, as described in [2]. First computes numerically, then symbolically, then
using vpa.

'auto' (default) The algorithm tries 'perm', 'basis' then 'trans' (numerically).

4.3.3 Options
'verbose',int integer, default: 1

Verbose level.

4.3.4 Output
Mret cell array of matrices

The blocks in the block diagonal of the matrices in basis B.
B matrix

Basis, i.e. Bˆ(-1)*M{i}*B has block-diagonal form.

23

4 tjsr-package

4.3.5 Example Usage
[M, B] = invariantsubspace({[1 0 ; 1 2], [3 -1; -1 3]}, 'basis', 'verbose', 2)

4.4 tjsr
Computes the JSR of a set of square-matrices and can be used as a black-box (whenever the algorithm reports
no errors).

4.4.1 Syntax
[JSR, info, allinfo] = tjsr(M, [options])

4.4.2 Input
M Cell array of matrices

The input matrices whose JSR shall be computed.

4.4.3 Important options
We first list the options which are the most important. Those will be sufficient for the standard-user. At the
end we list all available parameters.

'proof' default: false
Proofs the invariance of the polytope after termination of the algorithm and returns bounds for the JSR
w.r.t. that polytope. The proof uses Matlab functions and is very slow and may even fail in some cases.

'maxsmpdepth',int integer, default: depends on the size and number of matrices
Maximal length of s.m.p.-candidates to search for.

'plot',string string, default: 'none'
'norm' Plots intermediate norms
'polytope' Plots the constructed polytope
'L' Plots the number of vertices left to compute (at the moment)

'nearlycandidate',val double, default: ' 0.9999
Relative difference between s.m.p.-candidates and nearly-s.m.p.s. If you are sure that a certain s.m.p.-
candidate is an s.m.p., but the algorithms returned intermediate bounds stuck on some level, try to play
with that value.

'ordering',cell cell array of matrices of column vectors, default: empty
Orderings of s.m.p.-candidates.

'nobalancing' default: false
Disables balancing.

'balancingvector',val vector, default: empty
If given, these numbers are used to balance the multiple cyclic trees. The vector must have as many entries
as there are cyclic-roots (including extra-vertices). Otherwise the algorithm hase undefined behaviour.

'invariantsubspace',string string, default: 'auto'
Whether to search for invariant subspaces or not, which can take a long time.
'none' Nothing happens, Mret={M}, B=eye(dim).
'perm' Tries to find a permutation such that all M{i} are in block-diagonal form.
'basis' Tries to find a basis such that all M{i} are in block-diagonal form.
'trans' If M are transition matrices coming from a subdivision-scheme, the algorithm tries to find

subspaces of differences U, as described in [2]. First computes numerically, then symbolically, then
using vpa.

'auto' (default) The algorithm tries 'perm', 'basis' then 'trans' (numerically).

24

4 tjsr-package

'delta',val double, default: 1
Accuracy. For delta < 1 algorithm is faster, but returns only bounds for the JSR.

'verbose',val integer, default: 1
Verbose level. If verbose < 0 the algorithm suppresses error-messages (not recommended!).

4.4.4 Notes
• The algorithm is parallelised and starts the default Matlab-pool if there is no pool available. If a special

pool is needed (e.g. a non-local pool), it has to be started by the user prior starting the tjsr-algorithm.

• The algorithm is split up into three main-functions, responsible for the following tasks:
– tjsr: Preprocessing the input; Starting the Matlab pool; Restarting the algorithm with different

parameters (if needed); Postprocessing the output.
– tjsr_preworker: Finding invariant subspaces, starting tjsr_worker for each subspace; Finding

candidates; Balancing trees; Setting up the cyclic-root.
– tjsr_worker: Computing the invariant polytope.

• Most of the sub-routines of the algorithm are in separate files with the prefix tjsr_. We do not described
these functions here, since they are subject to big changes whenever the main function tjsr is changed.
Nevertheless, most of them have a documentation inside of their source-code.

4.4.5 Output
Screen Output

Output written in red must be read. For some options, the algorithm delivers wrong results and these messages
warn in these cases. These messages are printed again after termination of the algorithm.

Output in front of the progress bar

• Time: x/y Time needed for last iteration/total time needed for building the tree.
• JSR = [x, y] Interval in which the JSR lies.
• norm = x Current minimal computed norm of the polytope.
• In: x, Out: y Number of points which lie inside or outside the polytope, checked by estimating the

Minkowski-norm.
• #test: x/y Number of points to test in this iteration/number of points to check in total
• #V: x/y Number of points in simplified polytope/number of points in polytope in total
• 'Test old vertex' Old vertices of polytope get estimated again.

Output in the progress-bar

• i Vertex is proofed to be inside of the polytope, but norm is unknown
• x Vertex is proofed to be outside of the polytope, but norm is unknown
• _ Vertex is inside of polytope
• . Vertex is machine-epsilon-near to old vertex and is usually not considered to compute the norms of new

vertices
• , Vertex is 1000*machine-epsilon-near to old vertex
• o Vertex is slightly outside
• O Vertex is far outside
• m negative value occurred during computation of norm, vertex is added
• 8 Inf occurred during the computation of the norm, vertex is added
• ? NaN or Inf occurred during the computation of the norm, vertex is added
• E Some error occurred during the computation of the norm, vertex is added

Verbose levels higher than 2 generate much more output, which is not described here.

25

4 tjsr-package

Data Output

JSR double or 1x2-vector.
Interval containing the exact value for the JSR or an interval containing the JSR.

info struct
Contains nearly all data which was generated during the computation. Most important fields are described
here, all other fields are described below.
info.cyclictree.ordering cell array of matrices of column vectors

All orderings used for the roots of the cyclic tree.
info.cyclictree.smpflag vector

Defines what the orderings are: 0 : s.m.p.-candidate, 1 : nearly-s.m.p, 2 : extra-vertex.
info.cyclictree.V cell array of matrices

All generated vertices, each column is one vertex. To obtain the (invariant) polytope call
tjsr_getpolytope(info)

info.info.errortext string
All important error-messages.

info.JSR double or 1x2-vector
The same as JSR.

info.counter struct
Some self-explaining numbers.

info.block cell array of structs, only returned if there are invariant subspaces
If returned, each cell in info.block contains the info-struct for that block. The sub-structs
info.info and info.counter contains aggregated informations from info.block{:}.

allinfo cell array of structs
If the allgorithm restarts, only the info struct of the very last run is returned (to save memory). All
other info-structs are returned as the cell array allinfo.

4.4.6 Example usage
The algorithm (in the optimal case) does not need to be called with any parameters, i.e. a call of the form
tjsr(A), where A is the cell array of matrices whose JSR shall be computed, is sufficient. Nevertheless, in some
examples the algorithm does not work as expected and manual interaction is necessary.
For our examples in this section we make use of the function tgallery (see Section 4.2) which returns

examples matrices. Some options used for these examples are described in detail only in the later Section 4.4.7.

• This example shows how to specify the cyclic-roots. We use for the example the set of matrices
A=tgallery('rand_pm1',3,2,'seed',100), i.e. A = {A1, A2},

A1 =

 1 1 1
0 1 −1
1 −1 −1

 , A2 =

 0 0 1
−1 −1 0
1 1 −1

 .

The set A has an s.m.p. A1A
8
2, which can be computed with tjsr(A).

The command tjsr(A,'ordering',{[2]'}) starts the algorithm with a wrong s.m.p.. The algorithm
finds better s.m.p.-candidates and restarts several times. Note that automatic extra-vertices are disabled,
if we specify an ordering.
If we want to add extra-vertices we can do it in two ways.
tjsr(A,'extravertex',{[.1 0 0]'})

– This command specifies only the extra-vertex. The s.m.p.-candidates and nearly-s.m.p.s are
computed automatically.

tjsr(A,'ordering',{[1 2 2 2 2 2 2 2 2]', []'},'smpflag',[0 2],'v0',...
{[0.058585928823279 -0.687551547968790 0.723768303968635]', [.1 0 0]'})

26

4 tjsr-package

– This command specifies vectors of the cyclic-roots. The downside is, that one need to give the
exact eigenvalues of all s.m.p.-candidates and nearly-s.m.p.s.

– The option 'smpflag',[0 2] specifies that we want two cyclic-roots. The first is the root
corresponding to an s.m.p.-candidate (number 0), the second root corresponds to an extra-vertex
(number 2). If we also want to specify a root for a nearly-s.m.p., we have to use the number 1.

– The option 'v0',{[0.05859 -0.68755 0.72377]' [.1 0 0]'} specifies the eigenvectors/vec-
tors used to start the cyclic-root. They must be given as a cell array of column vectors.

– If one also wants to specify the dual-leading eigenvectors, this has to be done using the option
'v0s'.

– The option 'ordering',{[1 2 2 2 2 2 2 2 2]', []'} specifies the orderings of the cyclic-
roots. The first is the ordering of the s.m.p.. Orderings of extra-vertices MUST be empty.
Note that orderings MUST be given as column vectors, and the they are written in reversed
polish notation, i.e. the ordering 1 2 3 is the product A3A2A1.
If there is more than one ordering corresponding to a vector v0, it must be given as a matrix.
E.g.: 'ordering',{[1 2 2 2; 1 2 2 0]'} means that A32A1v01 = A22A1v01 = v01.

• This example presents balancing, automatic extra-vertices and approximate computation options. We use
for the example the set of Daubechies-matrices D7=tgallery('daub',7).
tjsr(D7) computes that this set has two s.m.p.s, D71 and D72.
tjsr(D7,'balancingvector',[1 1.02 .01 .01 .01 .01 .01]) Uses the given balancing vector. This

option is useful when one wants to proof the invariance of the invariant polytope by hand.
tjsr(D7,'nobalancing') This command disables the balancing (and the algorithm will not termi-

nate). By setting the verbose level to 4, tjsr(D7,'nobalancing','verbose',4), we see that the
third line of numbers does not stop to grow. This line corresponds to the number of added vertices
of the third cyclic-tree.

tjsr(D7,'autoextravertex',0) This command disables the auto extra vertices. Since the polytope
for these matrices is very flat, the LP-program fails to compute the Minkowski-norm and reports all
vertices to be outside (This can be seen by the fact, the the computed norms are ∞ always).

tjsr(D7,'nobalancing','delta',.99999) This command multiplies the matrices prior computing
the cyclic-tree by 0.99999. Thus the algorithm will terminate, although we did not balance the trees.
Clearly, the returned value is not exact but an interval.

tjsr(D7,'epspolytope',-.1) This command influences when a vertex is considered to be inside of
the polytope. A negative value means, that even points which are outside are considered to be inside.
The algorithm automatically increases the value of epspolytope whenever there are no vertices left
which can get children until the value is bigger than epslinprog.
This option speeds up the computation of the invariant polytope at the beginning, but in total leads
to much bigger polytopes and a slowdown of the algorithm. For approximate computation of the
JSR, the option 'delta' is preferable.

• This example presents invariant subspace options. We use for the example the random boolean matrices,
B=tgallery('rand_bool',4,2,43).
tjsr(B) finds two invariant subspaces.
tjsr(B,'invariantsubspace','none') disables the search for invariant subspaces. In some cases, the

search for invariant subspaces may take a long time, especially when the number of matrices is big
or the dimension is high.

• This example presents some plotting options. We use for the example a random set of 10 non-negative
matrices with spectral radius 1 and dimension 20,
T=tgallery('rand_rho_pos',20,10,116).
tjsr(T,'plot','norm') Plots the computed norms of vertices and colors them according whether they

have children or not.
It is also possible to plot the norms using the string 'info_norm', but then the plot does not look
as interesting.

27

4 tjsr-package

tjsr(T,'plot','L') Plots the number of added vertices and the number of remaining vertices to
compute. The graph usually has the shape of a Gaussian.

tjsr(tgallery('rand_rho',6,2,100),'plot','tree')2 Plots the graphs of the cyclic trees.
To change the labels of the vertices, change the code in tjsr_plotoutput.

tjsr(T,'plot','polytope') Plots the polytope/cone. If the dimension is higher than 3, a random
subset of directions is chosen to be plotted in each iteration.

tjsr(T,'plot','info_normest') Plots the estimated Minkowski-norms.
The prefix 'info_' allows to plot any data contained in the info-struct. Fields in the sub-struct
cyclictree can be addressed directly. All others need to be called with their full name. Thus the
option 'plot','info_normest' is equivalent to
'plot','info_cyclictree.normest'

tjsr(T,'plot','info_normest_norm','fastnorm',0) Plots the real norms against the estimated
Minkowski-norms. We have to add the option 'fastnorm',0 since otherwise the Minkowski norms
of some points would not be computed.
If one wants to plot more data from the info-struct, the variables to be plotted have to be seperated
with an underscore _.

tjsr(T,'plot','info_normest_norm_rho','fastnorm',0) Plots the estimated Minkowski-norms against
the real norms against the spectral radii.
Also more than two variables are possible.

tjsr(T,'plot','info_normest_L') Plots the estimated Minkowski-norms and the number of pro-
cessed vertices. If the variables are not compatible in size or format, the algorithm tries to plot them
anyhow.

4.4.7 All options
Pre- and postprocessing options

controlling pre-processing and post-processing steps.

'clc' default: false
Clears the console before starting the algorithm.

'maxnumrestart',int integer, default: 10
Maximum number of restarts.

'pauseonreset',flag boolean, default: false
Waits for a key-press after every restart.

'proof',flag boolean, default: false
Proofs the invariance of the polytope after termination of the algorithm and returns bounds for the JSR
w.r.t. that polytope.
0 Do not test the invariance.
1 Use the original matrices to test.
2 Use the normalized matrices to test, i.e. the set M/ JSR.

This option works only if there are no invariant subspace (and under some other conditions). The test
is done using Matlab’s linprog and without any tricks speeding-up the computation, implying it is very
slow.

'nopreprocess' default: false
If this option is not set, the input matrices are preprocessed using the following steps:
• Equal matrices are removed from the input set (all but one).
• All matrices in M are multiplied with the number modulus 1, s.t. all first non-zero entries are positive.

2Since the tree for the matrices T is too big, we use a different set of matrices for that example.

28

4 tjsr-package

Preworker options

controlling the search for candidates, nearly-candidates and extra-vertices, etc..

'JSR',val 1x2-vector, default: empty
An initial true! estimate for the JSR. The value is used (amongst other things) to search for s.m.p-
candidates. The option may be removed in a future release.

'ordering,val cell array of matrices of column vectors, default: empty
The orderings of the s.m.p.-candidates, nearly-candidates and extra-vertices. Extra-vertices have empty
ordering. Each cell contains all the orderings belonging to the same leading eigenvalue. If the orderings
have different length, zeros must be appended.
E.g.: 'ordering',{[1 2; 2 0]',[1 1 2]'}.

'smpflag',val row-vector, default: empty
Defines whether the candidates are an s.m.p. or not. 0=candidate, 1=nearly-candidate, 2=extravertex. If
smpflag is given, ordering must be given too.
E.g.: 'smpflag',[0 1]

'v0',val cell array of column vectors, default: empty
The corresponding eigenvectors to the candidates/the starting vectors. If v0 is given, ordering must be
given , v0s should be given.

'v0s',val cell array of column vectors, default: empty
The corresponding dual eigenvectors to the candidates. If v0s is given, v0 must be given.

'balancingdepth',val integer, default: 4
Depth used for balancing multiple trees. If the balancing takes too long, try to decrease that value.

'balancingvector',val vector, default: empty
Balancing-vector. Must have as many entries as there are cyclic trees.
E.g.: 'balancingvector',[1 0.8].

'nobalancing' default: false
Disables balancing. This is equivalent to 'balancingvector',[1 1 1 ... 1].

'extravertex',val cell array of column vectors, default: empty
Extra-vertices can be given in two ways: Either as a cell array of vectors as argument of 'extravertex',
or in the cell array of 'v0' with corresponding smpflag set to 2.
E.g.: 'extravertex',{[0.1 0 0]', [0 0.1 0]'}

'multiplicity',val vector, default: empty
The multiplicity of the corresponding leading eigenvalues in v0. This option is nearly useless and only
sometimes used to choose between algorithms (P) and (R).

'autoextravertex',val double, default: 0.1
Adds a vertex for all directions whose corresponding singular value is less than autoextravertex.

'maxnumcandidate',val integer, default: numel(M)*10 (subject to be changed)
If there are more candidates than maxnumcandidate, the algorithm restarts and maxsmpdepth is reduced.

'nearlycandidate',val double, default: ' 0.9999
Maximal relative difference between normalized spectral radii of s.m.p.-candidates and nearly-s.m.p.s.

'noclassify' default: false
By default, all s.m.p. candidates (and their cyclic permutations) are examined whether they have same
eigenvectors, in which case they are grouped together and only one tree is built up for them. This may
take a long time in some cases. This options disables that behaviour. Default=false.

'invariantsubspace',string string, default: 'auto'
Whether to search for invariant subspaces or not, which can take a long time.
See invariantsubspace for more information.
'none' Nothing happens, Mret={M}, B=eye(dim).
'perm' Tries to find a permutation such that all M{i} are in block-diagonal form.
'basis' Tries to find a basis such that all M{i} are in block-diagonal form.

29

4 tjsr-package

'trans' If M are transition matrices coming from a subdivision-scheme, the algorithm tries to find
subspaces of differences U, as described in [2]. First computes numerically, then symbolically, then
using vpa.

'auto' (default) The algorithm tries 'perm', 'basis' then 'trans' (numerically).
'nomultipleeigenvector' default: false

Only takes one leading eigenvector per candidate, even if there are more.
'complexeigenvector',flag integer, default: 2

Defines how complex eigenvectors shall be treated.
0 Complex eigenvectors are kept.
1 Complex eigenvectors are removed, if there is also a real eigenvector corresponding to the same

product.
2 (default) Complex eigenvectors are removed, if there is at least one real eigenvector among all prod-

ucts.
3 Real vectors are computed which span the real subspace of the complex leading eigenvectors (not

implemented yet).
4 Complex eigenvectors are removed.

'minJSR', val double, default: 0
Minimal value of normalized spectral radius of s.m.p.-candidates to be found. This option should not be
used, since it is ignored most times.

'maxsmpdepth',int integer, default: depends on the size and number of matrices
Maximal length of s.m.p.-candidates to search for.

'findsmp_N',int integer, default: depends on the size and number of matrices
Number of products kept in each step of the findsmp algorithm. See findsmp for more information.

'delta',val double, default: 1
Matrices are multiplied by delta after the construction of the cyclic tree. A smaller value leads to faster
convergence, but the algorithm cannot return the exact value of the JSR anymore.

Worker options

controlling how the invariant polytope is built up.

'algorithm',val integer, default: empty
The norm to be used:
0 or 'P' ‖ · ‖co− V , i.e. cone-norm.
1 or 'R' ‖ · ‖cos V , i.e. symmetrized polytope-norm.
2 or 'C' ‖ · ‖absco V , i.e. complex polytope-norm.
[] (default) The algorithm is determined automatically.

'fastnorm',val integer, default: 1
Whether the norms shall be estimated prior their exact computation.
0 Do not estimate.
1 (Default) Check only whether points are inside.
2 Check whether points are inside or outside.

'naturalselection',int integer, default: depends on the number of available threads
Minimum number of vertices whose norms are computed in each level.

'naturalselectiontype',val integer, default: +inf
How to select new vertices.
inf or -inf (Default=+inf) Use three times norm-estimate, one time parent-Minkowski-norm.
1 or -1 Use norm-estimate. Fastest type, but the intermediate bounds converge slowly.
2 or -2 Use parent-Minkowski-norm.

30

4 tjsr-package

3 or -3 Use spectral radii of matrix-products.
100 or -100 (for debugging) Use negative spectral radii of matrix-products.

If the value is positive, then all children of a vertex are selected, if at least one is selected. If the value is
negative, the algorithm can’t produce intermediate bounds for the JSR, but may be faster.

'testoldvertex',val integer, default: 1
Whether old vertices shall be estimated if they lie inside the polytope or not. In some cases, this option
tremendously increases the performance of the algorithm.
0 Never
1 (Default) Sometimes
2 Always

'simplepolytope',val integer, default: 10−8

Vertices with distance roughly less than simplepolytope to the polytope are not used in the norm
computation. simplepolytope should be greater than epslinprog.

'epspolytope',val double, default: ' 2 · 10−9

Vertices with norm bigger than 1 − epspolytope are considered to be outside the polytope. Value is
automatically increased during the computation if it less then epslinprog, in particular epspolytope
can be less then zero. See the example section for more information.

Termination options

controlling the termination of the algorithm. Note that most of criteria are only tested at the beginning of each
iteration.

'maxstepnumber',val double, default: ∞
Computation stops if more than maxstepnumber vertices are tested.

'maxtreetime',val double, default: ∞
Computation stops after the construction of the tree takes more than maxtreetime seconds.

'maxiteration',val double, default: ∞
Computation stops after iterating the algorithm maxiteration times.

'maxtime',val double, default: ∞
Computation stops after maxtime seconds.

'maxstepnumber',val double, default: ∞
Computation stops if the polytope has more than maxstepnumber vertices.

'testeigenplane',val double, default: −∞ (i.e. this option is disabled)
Tests whether a vertex lies more than testeigenplane outside of the supporting eigen-planes defined by
the candidates. If a vertex lies outside, the candidates are not s.m.ps. Positive values report a lot of
false-positives. If testeigenplane = 1, the algorithm changes the value to −10−10. This behaviour may
be changed in a future release.

'testspectralradius',val double, default: −10−10

Tests whether the intermediately occurring spectral radii are greater than 1 + testspectralradius.
Positive values report usually false-positives. If testspectralradius = 1, the algorithm changes the
value to −10−10. This behaviour may be changed in a future release.

'validateupperbound',val double, default: 0
Algorithm terminates if upper estimate of JSR is less than validateupperbound. Also changes epspolytope.
If validateupperbound < 0, this option is ignored.

'validatelowerbound',val double, default: ∞
Algorithm terminates if the lower estimate of the JSR is greater than validatelowerbound.

31

4 tjsr-package

Output options

controlling the output during the computation, and partly also the return-values.

'plot',string string, default: empty
'norm' Plots intermediate norms
'polytope' Plots the constructed polytope
'L' Plots the number of vertices left to compute (at the moment)
See tjsr_plotoutput for further options.

'verbose',val integer, default: 1
Verbose level. If verbose < 0 the algorithm suppresses error-messages (not recommended!). Default=1.

'diary' integer
Starts the Matlab diary and sets the default value for save to 2.

'profile' integer
Starts the Matlab profiler.

'save',val integer, default: 0
How much of the output (diary, plots, variables) shall be saved to disk.
0 (Default) Do not save output.
1 Save output at end.
2 Save output after each iteration.
3 Save output after each iteration in different files.

Debug options

merely for testing the algorithm (should not be changed by the standard-user).

'balancing' If set, this indicates that we are balancing.
'memory' If set, algorithm tries to save memory (Not available at the moment).
'alwaysout' If set, then all points are assumed to be outside of the invariant polytope.
'epsequal',val double, default: 10−12

Epsilon used to compare floating numbers for equality.
'epslinprog' double, default: depends on the LP-solver

Epsilon used for the linear programming part. If the Gurobi-solver is used, this value is fixed to 10−9. If
Matlab’s linprog is used, this value must be ≥ 10−10.

'waitafterbalancing' If set, algorithm waits for key-pressing after balancing.
'rholeqval',val If set, matrix products whose spectral radius is greater than rholeqval + 10 ∗ eps are

discarded and it is assumed their respective vertices are inside of the polytope.
'showquantity,val double, default: 25

Controls up to which size sets of vectors, matrices, etc.. are displayed.

4.4.8 All elements in the info-struct
This struct contains nearly all the computed data by the algorithm. It consists of several sub-structs which are
explained here. Only a subset of those entries are returned always. These are info.JSR, info.info.infotext
and info.info.errorcode.

info.JSR double or 1x2-vector
Value or bound for the JSR.

info.M_normalized cell array of matrices
Preprocessed and scaled input matrices M.

32

4 tjsr-package

info.M_original cell array of matrices
Original input matrices M.

info.arguments cell array
Processed calling arguments

info.arguments_raw cell array
original calling arguments.

info.balancing cell array of structs
Information obtained during balancing. Contains a subset of the entries in cyclictree.

info.counter struct
Information about how often things happend.

info.cyclictree struct
The invariant polytope (cyclic tree).

info.info struct
Various data

info.lambda double
Normalized spectral radius of the s.m.p.-candidate. Usually equals the first entry in JSR.

info.opt struct
Used options.

info.counter

This sub-struct contains mostly self-explaining data.

info.counter.iteration integer
How often the algorithm iterated.

info.counter.numberofvertex integer
Number of vertices in the polytope.

info.counter.numblock integer
Number of invariant blocks.

info.counter.nummatrix integer
Number of input matrices.

info.counter.numcandidate integer
Number of s.m.p.-candidates.

info.counter.numnearlycandidate integer
Number of nearly-candidates.

info.counter.numextravertex integer
Number of extra-vertices.

info.counter.numordering integer
Equals numcandidate+ numnearlycandidate+ numextravertex.

info.counter.numstepbig integer
Number of steps done by the linear-programming port.

info.counter.numstepsmall integer
Number of processed vertices by the algorithm.

info.counter.starttime vector
Time when the algorithm started.

info.counter.starttreetime vector
Time when the construction of the tree started.

info.counter.totaltime double
Time needed to terminate.

info.counter.treetime double
Time needed to build up the tree.

33

4 tjsr-package

info.cyclictree

This sub-struct contains the data of the cyclic tree. There are three types of main data structures present.

• Vectors (with as many elements as there are cyclic trees). Each number corresponds to one cyclic tree.
• Cell arrays (with as many elements as there are cyclic trees). Each entry corresponds to one cyclic tree.
• Cell arrays (with as many elements as there are cyclic trees) of matrices. Each column of a matrix

corresponds to a vertex of the cyclic tree.

In the following we use the name ordering for candidates, nearly-candidates and extra-vertices.

info.cyclictree.ordering cell array of matrices of column vectors
The orderings of the candidates, nearly-candidates and extra-vertices. The latter have empty ordering.

info.cyclictree.smpflag row-vector
Defines what the orderings are: 0 : s.m.p.-candidate, 1 : nearly-s.m.p, 2 : extra-vertex.

info.cyclictree.v0 cell array of column vectors
Starting vector for each ordering.

info.cyclictree.v0s cell array of column vectors
Dual vector for each ordering.

info.cyclictree.balancingvector row-vector
Balancing factors.

info.cyclictree.multiplicity row-vector
Multiplicity of the orderings vectors.

info.cyclictree.orho vector
Normalized spectral radii of each ordering. Extra-vertices have the value NaN.

info.cyclictree.oclass cell array of matrices of column vectors
Orderings of products which are already contained in the cyclic tree. This field may be removed in a
future release.

info.cyclictree.maxlengthordering integer
Maximal length of the orderings for each tree.

info.cyclictree.L cell array of row-vectors
Number of vertices in each tree.

info.cyclictree.livingvertex row-vector
Number of vertices without children which are not inside the polytope.

info.cyclictree.timelvl row-vector
Time spent for each iteration.

info.cyclictree.normlvl row-vector
Computed norm in each iteration. This sequence is not necessarily monotonic.

info.cyclictree.level cell array of row-vectors
Number of the iteration in which the corresponding vertex was added.

info.cyclictree.norm cell array of row-vectors
Computed norm of the vertices.

info.cyclictree.normest cell array of row-vectors
Estimated norm of the vertices.

info.cyclictree.normparent cell array of row-vectors
Computed norm of the parent vertices.

info.cyclictree.o cell array of matrices of column-vectors
Ordering of the product to obtain the respective vertex in info.cyclictree.V.

info.cyclictree.parent cell array of row-vectors
Index of parent-vertex.

info.cyclictree.rho cell array of row-vectors
Spectral radii of the product to the corresponding vertices.

34

4 tjsr-package

info.cyclictree.status cell array of row-vectors
Indicates whether a vertex has children (1) or not (0).

info.cyclictree.V cell array of matrices of column-vectors
All generated vertices. To obtain the (invariant) polytope call tjsr_getpolytope(info).

info.cyclictree.Vs cell array of matrices of column-vectors
All generated dual vertices. Usually only those for the cyclic root are computed.

info.cyclictree.V_intermediate cell array of matrices of column-vectors
Vertices of the polytope, only used internally.

info.cyclictree.ub_intermediate double
Upper bound for the JSR, only used internally.

info.info

Contains mostly info and error data.

info.info.errorcode integer
Termination-code. Negative values are successful termination, all other values indicate bad termination.
-80 Worker was not started due to user-input (not used)
-60 JSR is less than validateupperbound.
-50 JSR is greater than validatelowerbound.
-40 Exact value was found during balancing (not used).
-20 Algorithm terminated successfully and there were invariant subspaces
-10 Algorithm terminated successfully.
-5 Algorithm terminated successfully and delta > 0.
0 Input error.
inf Unkown error.
nan Strange error.
10 No candidate was found.
20 Candidate is no s.m.p..
30 No balancing vector found.
60 Candidate with higher normalized spectral radius found.
70 maxtime reached.
75 maxtreetime reached.
80 maxstepnumber reached.
90 maxvertexnumber reached.
100 maxtreedepth reached.
110 Some vertex lies outside the supporting eigenplanes, thus the candidate is no s.m.p.
120 maxiteration reached.
130 Too much candidates found.
170 An error in an invariant subspace occured (The algorithm usually does not recover from that error

and aborts).
180 JSR is likely to be zero (This algorithm cannot handle that case).
1000 Complex leading eigenvectors (The algorithm cannot handle that case at the moment).

info.info.errorinformation usually cell array but may have different format
Used to pass information of errors from tjsr_worker back to tjsr.

info.info.infotext string
Most of (and even more) output text.

info.info.errortext string
All error-messages.

info.info.dim integer
Dimension of the input-matrices.

info.info.algorithm integer
Used algorithm. 0=cone (case (P)), 1=polytope (case (R)), 2 complex-polytope (case (C)).

35

4 tjsr-package

info.info.matrixtype struct
Self explaining properties of the input matrices.

info.info.findsmp struct
Data returned from findsmp.

info.opt

Struct where all described options are saved.

info.block

Only set if there are invariant subspaces. If so, each cell in info.block contains the info-struct for that block
and info.info and info.counter contains aggregated informations from info.block{:}.

4.5 tjsr_getpolytope
Returns the vertices of the invariant polytope.

4.5.1 Syntax
[VV] = tjsr_getpolytope(info)

4.5.2 Input
info info-struct as returned by tjsr.

4.5.3 Output
VV matrix of column vectors

The invariant polytope.

4.5.4 Example Usage
[JSR,info]=tjsr(tgallery('rand_gauss',3,2,'seed',10))
VV=tjsr_getpolytope(info)
plotm([VV -VV],'resolution',0,'MarkerSize',100)
info.opt.plot='polytope'
tjsr_plotoutput(info)

4.6 preprocessmatrix

4.6.1 Syntax
Simplifies sets of matrices while preserving its joint spectral radius (for default-values).

[M] = preprocessmatrix(M, [options])

4.6.2 Input
M cell-array of matrices

The input matrices

36

4 tjsr-package

4.6.3 Options
'inverse',bool boolean, default: false

Takes the Moore-Penrose pseudo-inverse of all matrices.
'addinverse',bool boolean, default: false

Adds the Moore-Penrose pseudo-inverses to the returned set.
'transpose',bool boolean, default: false

Returns the transposed matrices.
'addtranspose',bool boolean, default: false

Adds the transposed matrices to the returned set.
'makepositive',bool boolean, default: true

Multiplies each matrix with the unique number modulo 1, such that the first non-zero entry of each matrix
is positive.

'timestep',val double, default: false
Returns the matrices I · (1 − timestep) + M{i} · valtimestep where I is the identity matrix. This trans-
formation is used in connection with the computation of the stability of linear systems.

'perturbate',val double, default: 0
Perturbates the matrices randomly by randn · perturbate.

'removezero',bool boolean, default: true
Removes all (but one) zero matrices.

'removeduplicate,bool boolean, default: true
Removes duplicates. Uses no tolerance for comparing floating point numbers.

'basechange,val various data-type, default: 0
Performs a base change.
0 No base change is made.
'random' A random base change is made.
1 The eigenvectors of M{1} is used, implying that M{1} is in Jordan-normal-form. If M{1} is badly

scaled, M{2} is used, etc.
A (where A is an invertible matrix). The matrices A−1M{i}A are returned.

'exponential',val boolean, default: false
The matrix exponential of each matrix is taken.

'nodouble',val boolean, default: false
Matrices are not converted to double.

'verbose',int integer, default: 1
Verbose level.

If no options are given, the matrices are processed in the order as written above. The second to last step is
'makepositive' again. If at least one option (except ’verbose’) is given, only that option is used.

4.6.4 Output
M cell array of matrices

The processed matrices. If no matrices are removed or added, the returned array has the same size and
topology as the input array. Otherwise it is a vector.

4.6.5 Example Usage
preprocessmatrix({[-1 2; 2 3],[-1 2; 2 3]})

37

5 Test-drivers
Apart from the described example-usages in this documentation, and the examples in the help of each function,
the functions setupm, setupsequence, setupsubdivision, setuptjsr and setuptmisc also contain examples.
The function setupt calls each of these functions and succeeded on the architectures

• Intel Core i5-4670S@3.8GHz, 8GB RAM,
Linux 4.15.0-38, Ubuntu 16.04.5 LTS,
Matlab R2017a,
The JSR toolbox v1.2b, SeDuMi Toolbox v1.32, with and without Gurobi v8.0.1,

• Intel Xeon IvyBridge-Ep E5-2650v2@2.6GHz, 64GB RAM,
Linux 3.10.0, CentOS Linux 7,
Matlab R2016b/R2017b/R2018b
The JSR toolbox v1.2b, SeDuMi Toolbox v1.32, with and without Gurobi v7.5.1/Gurobi v8.0.1,

• Intel Core i5-760@2.8GHz, 8GB RAM,
Windows 7 SP1,
Matlab R2017a,
The JSR toolbox v1.2b, SeDuMi Toolbox v1.32, with and without Gurobi v8.0.1,

• 1Intel Core i7@2.5GHz, 16GB RAM,
OSX 10.10.5 (Yosemite), macOS 10.14.1 (Mojave),
Matlab R2017b,
The JSR toolbox v1.2b, SeDuMi Toolbox v1.32, Gurobi v8.0.1.

The packages do not run on Matlab versions prior R2015b.

1Parts of the SeDuMi-package did not work on this configuration. But these parts are not used by the m-, sequence-, subdivision-,
tjsr- and tmisc-package.

38

6 Copyright

6.1 Cover-image
Copyright (c) 2018, Thomas Mejstrik. All rights reserved.

6.2 m-, sequence-, subdivision-, tjsr- and tmisc-package
Copyright (c) 2018, Thomas Mejstrik.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the distribution

* Neither the name of the University of Vienna nor the names
of its contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

6.3 The JSR toolbox [6]
Copyright (c) 2016, Raphael Jungers. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the distribution

* Neither the name of the UCLouvain nor the names
of its contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

6.4 SeDuMi
Distributed under the GNU General Public License 2.0.

39

Bibliography
[1] V. Blondel, C.T. Chang, A genetic algorithm approach for the approximation of the joint spectral radius,

30th Benelux Meeting on Systems and Control, (2011), perso.uclouvain.be/chia-tche.chang.

[2] M. Charina, V.Yu. Protasov, Regularity of anisotropic refinable functions, Appl. Comput. Harm. A., (2017).

[3] M. Charina, T. Mejstrik, Multiple multivariate subdivision schemes: matrix and operator approaches, J.
Comput. Appl. Math., in press.

[4] G. Gripenberg, Computing the joint spectral radius, Linear Alg. Appl., 234, 43–60, (1996).

[5] N. Guglielmi, V.Yu. Protasov, Exact Computation of Joint Spectral Characteristics of Linear Operators,
Found. Comut. Math., 13, 37–39, (2013).

[6] J.M. Hendrickx, R.M. Jungers, G. Vankeerberghen, JSR: A Toolbox to Compute the Joint Spectral Radius,
Conf. on Hybrid Systems: Computation and Control Proc., (2014). de.mathworks.com/matlabcentral/fileex-
change/33202-the-jsr-toolbox

[7] I.D. Morris, A rapidly-converging lower bound for the joint spectral radius via multiplicative ergodic theory,
Adv. Math. 225 (6), 3425–3445, (2010).

[8] , A. Potiopa, A problem of Lagarias and Wang, Master thesis, Siedlce University, Poland, (1997).

[9] Chen D.R., Jia R.Q., S.D. Riemenschneider, Convergence of Vector Subdivision Schemes in Sobolev Spaces,
Appl. Comput. Harmon. Anal. 12 (1), 128–149, (2002).

[10] J.F. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones, Optim.
Methods Softw. 11–12, 625–653, (1999), sedumi.ie.lehigh.edu

[11] V.D. Blondel, J.N. Tsitsiklis, The boundedness of all products of a pair of matrices is undecidable, Syst.
Control Lett., 41(2), 135–140, (2000).

40

https://perso.uclouvain.be/chia-tche.chang/code.php
https://de.mathworks.com/matlabcentral/fileexchange/33202-the-jsr-toolbox
https://de.mathworks.com/matlabcentral/fileexchange/33202-the-jsr-toolbox
http://sedumi.ie.lehigh.edu/?page_id=58

	Installation
	Overview over the included packages
	Naming/calling conventions and data-format
	m-package
	sequence-package
	subdivision-package
	tjsr-package
	tmisc-package
	test-package

	subdivision-package
	constructordering
	getS
	blf
	tile
	constructOmega
	constructV
	restrictmatrix
	transitionmatrix
	Example showing how to use the subdivision-package

	tjsr-package
	findsmp
	tgallery
	invariantsubspace
	tjsr
	tjsr_getpolytope
	preprocessmatrix

	Test-drivers
	Copyright
	Cover-image
	m-, sequence-, subdivision-, tjsr- and tmisc-package
	The JSR toolbox Jung2014
	SeDuMi

	Bibliography

