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Abstract

The construction of frames with non-uniform time and frequency resolution can
allow us to adapt the atoms to certain properties of the signal to be analysed.
Evangelista showed in [7] that this is entirely possible with the sole use of warp-
ing operators in the time and frequency domain. In the case of non-uniform
frequency tiling of the TF plane, this leads to atoms with unbounded support
in the time domain, which renders this approach impossible for real time com-
putation. Evangelista proposes in the same paper two approximations for finite
length windows.

This thesis presents a plug-in for the programming language Pure Data which
implements this idea. I show how the implementation works and discuss different
possibilities of the implementation always with focus on how to obtain real time
computation. After this a short section discusses the computational and memory
costs for this algorithm. It ends with measurements of the relative error of an
analysed-synthesised signal using different test signals (noise, sinusoids, clicks,
music). It turns out that the algorithm in the current stage reaches a relative
error of about -57 dB for white noise and a window length of 0,4 s.

Zusammenfassung

Die Konstruktion von Frames mit nicht uniformer Zeit und Frequenzauflösung
erlaubt es, die Fenster an vorliegende Eigenheiten des zu analysierenden Signals
anzupassen. Evangelista zeigt in [7], dass dies möglich ist mit der bloßen An-
wendung von Warping Operatoren, die im Zeit und Frequenzbereich arbeiten.
Im Falle von nicht gleichförmiger Frequenzaufteilung der TF Ebene führt dies
im Allgemeinen zu zeitlich unbeschränkten Fenstern, wodurch Echtzeit Berech-
nungen unmöglich werden. In der gleichen Arbeit zeigt Evangelista aber auch
Approximationen für endliche Fenster.

Diese Arbeit stellt ein Plug-In für die Programmiersprache Pure Data vor
die diese Idee implementiert. Ich zeige, wie diese Implementierung funktioniert
und bespreche auch andere Möglichkeiten mit dem Augenmerk auf Echtzeit-
berechnung. Danach folgt ein kurzer Abschnitt über den Berechnungsaufwand
und Speicheraufwand dieses Algorithmus. Die Arbeit endet mit Messungen des
relativen Fehlers von analysiert-synthetisierten Signalen. Es zeigt sich, dass mit
dem Algorithmus in der derzeitigen Form ein relativer Fehler von etwa -57 dB
erreicht werden kann für weißes Rauschen und einer Fensterlänge von 0,4 s.



The upper picture is the first spectrogram which was made with my program.
It shows the beginning of Susan Vega’s Tom’s Diner. The second picture is the
first spectrogram which was made with my program when it finally worked. It
shows some swooshes (In this picture, the non uniform data rate of the coeffi-
cients is easily visible).

I would like to thank my parents, Olga Podovalova, my professor Gianpaolo
Evangelista, my professor Johannes Marian, my professor Manon Liu Winter,
Jan, my brother Martin Mejstrik, Katja Link and my teacher Lovorka Schenk
who were all involved in this thesis or in my piano studies.



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1 Introduction 5
1.1 Overview of the content of the thesis . . . . . . . . . . . . . . . . 6

2 Mathematical Preliminaries 7
2.1 Vector spaces and Bases . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Fourier Series and Fourier Transform . . . . . . . . . . . . . . . . 17
2.3 Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Linear Time-Frequency Representations 22
3.1 Short Time Fourier Transform . . . . . . . . . . . . . . . . . . . 22
3.2 Gabor Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Wavelet Transform . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Redressed Warped Gabor Expansion . . . . . . . . . . . . . . . . 28

4 Realtime Computation of Warped Gabor Expansion 34
4.1 Problems due to real time computation . . . . . . . . . . . . . . 34
4.2 The implementation of the algorithm . . . . . . . . . . . . . . . . 34
4.3 Computational Costs . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4 Computational Error . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Recapitulation 56

6 Appendix 58
6.1 Spectrograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.2 The pd-external . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.3 Pure Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Bibliography 77

CV 79

Eidesstattliche Erklärung 81



Chapter 1

Introduction

Music, as physically seen, is just a change of pressure in some medium (probably
air). If you want to describe this mathematically, you end up with a function
describing the current pressure over time. If you visualize this, you usually do
not see much of the music you heard before (e.g. see figure 1.1)

Figure 1.1: Music, visualized as a function of pressure over time.

One method to visualize and analyse sound in a better way, is to plot the
spectral components (frequencies contained inside the music) instead of the
pressure change. This way our example looks like the plot in figure 1.2. The
time is plotted on the x-axis. On the y-axis one can see all the frequencies which
are present at a certain time. The more intense red, the higher the magnitude
of that frequency. From the image we can see that the sound does not change
much over time. It mostly only becomes more and more silent (since everything
gets brighter). Furthermore, the present frequencies have all a distance of about
133 Hz from each other, and the deepest present frequency is about 133 Hz. This
means, the tone mostly consists only of simple sinusoids1 whose frequencies are
all a multiple of 133 Hz. If one knows, that tones from instruments mostly
consists of many simple sinusoids, with frequencies all a multiple of some basic
frequency, one can see in that figure, that our example will be some kind of tone
played by some kind of instrument. And it really is, namely a C3 played by a
Fazioli Grand Piano.

The operation we used to generate that picture is the Short-Time-Fourier
transformation (STFT) introduced by Dennis Gábor in the year 1946 [10]. The

1Sine waves
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STFT belongs to a family called Time-Frequency-Representations. The main
idea behind these methods is to decompose sound into small bricks, often called
atoms which are somewhat an equivalent to the points in pointillism paintings.
Some people compare the atoms also to notes in a (piano-roll) score, but atoms
are usually much shorter than any notes in a score. Every atom depicts some
sound at a specific time. The differences between these methods is mainly, how
these atoms are chosen. Furthermore, one would like to be able to resynthesize
the sound from these atoms. Therefore one needs enough atoms to catch all
possible sounds. Otherwise some information would be lost.

Figure 1.2: Spectrogram of the music in figure1.1.

The representation of music in terms of time and frequency (in the so called
Time-Frequency-Plane, abbreviated TF-plane) has more advantages than just
seeming natural to us. For example, one can systematically eliminate or boost
certain frequencies (used in denoisers, equalizers, compressors), compress music
(used in mp3-files), tune guitars, let the computer typeset musical scores or
identify instruments with the computer.

1.1 Overview of the content of the thesis

In chapter 2 the concepts of vector space, basis, orthonormal basis, inner prod-
uct, Fourier Series, continuous Fourier transform, and frames are reviewed.
Chapter 3 gives an overview of the Short Time Fourier transform and the Gabor
Expansion which we will need later on. Furthermore the Wavelet transform is
briefly illustrated. Section 3.4 explains the mathematical background of how
to warp Gabor Frames and how to redress them, as it is presented in [7]. In
chapter 4, I first discuss which problems arise in the real time computation case.
I then present the implementation of my algorithm, divided in the parts atom
computing, analysis and synthesis. Additionally, notation, which is used after-
wards, is set. Section 4.4 deals with the computational costs of the algorithm.
The costs are quoted as number of instructions per sample. The section 4.4
contains measurements of the relative analysis-synthesis error conducted with
different test signals and parameters. Chapter 5 gives a very brief summary and
a list points of what should be done further. The appendix contains spectro-
grams from the computational error section and an explanation on how to use
the Pure Data-external together with a description of its interface. Links where
to download Pure Data and manuals for Pure Data can be found in section 6.3.
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Chapter 2

Mathematical Preliminaries

Since the basis of most time-frequency representations is the Fourier transform,
I first give an overview about this important tool. It was introduced in 1807
by Joseph Fourier1 but partially used much longer before by Carl Friedrich
Gauss, Jean le Rond d’Alembert, Lagrange and even the Babylonians. Fourier
had the idea that every periodic function is decomposable into a sum of the
most basic periodic functions we know, namely sines and cosines which can are
characterized by their fundamental frequency and amplitude.

There are different approaches to get to the Fourier transform. An easy
approach, aimed at musicians, can be found in [1]. A more mathematical, but
also a “funny to read and free to download as a a pdf”-approach is [14]. In
this thesis I am going to present the Fourier transform as a transformation on
function spaces. For that purpose I will first present the notion of a vector space
and its bases, then proceed to function spaces. Since bases are not well suited for
this application we need the concept of frames too, which are a generalisation of
bases. This is not the most instructive approach to the Fourier transformation,
but I assume that most readers will already be acquainted with the Fourier
transform.

2.1 Vector spaces and Bases

Because we will only need vector spaces over R and C, we do not need the most
general definition of vector spaces.

Definition 2.1. A vector space V over R (C) is a set together with two oper-
ations + : (V × V) → V and · : (R (C) ×V) → V and that satisfy the following
axioms. Let u, v, w ∈ V and a, b ∈ R (C).
• v + w = w + v
• (u+ v) + w = u+ (v + w)
• There exists O ∈ V such that v +O = v for all v ∈ V
• For all v ∈ V there exists −v ∈ V such that v + (−v) = O
• a(b · v) = (ab) · v
• 1 · v = v for all v ∈ V and 1 ∈ R
• a(u+ v) = au+ av

1Jean Baptiste Joseph Fourier; * 21. March 1768 at Auxerre, † 16. May 1830 in Paris.
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• (a+ b) · v = a · v + b · v
The writing of the “·” is often omitted. Elements of V will be called vectors,
elements of R (C) will be sometimes called scalar.

This definition looks complicated, but altogether it states that one can add
vectors, scale vectors and that there exists something like the number 0. Some
examples will make things clear.

Example 2.2. The most basic example of a vector space is the R2, the plane.
Let V = {(x, y)|x, y ∈ R}. We define (x1, y1)+(x2 +y2) = (x1 +x2, y1 +y2) and
for a number a ∈ R let a(x, y) = (ax, ay). This defines a vector space, which is
easily checked, let u = (x1, y1), v = (x2, y2), w = (x3, y3) and a, b ∈ R.
• v + w = (x2 + x3, y2 + y3) = (x3 + x2, y3 + y2) = w + v
• (u+ v) +w = (x1 + x2, y1 + y2) + (x3, y3) = (x1 + x2 + x3, y1 + y2 + y3) =
u+ (v + w)

• v+ (0, 0) = (x2 + 0, y2 + 0) = (x2, y2) = v and (0, 0) ∈ V, hence (0, 0) = O
• Let −v = (−x2,−y2) ∈ V, then v + (−v) = (0, 0) = O
• 1v = 1(x2, y2) = (x2, y2) = v
• a(u+ v) = a(x1 + x2, y1 + y2) = (ax1 + ax2, ay1 + ay2) = au+ av
• (a+ b)v = ((a+ b)x2, (a+ b)y2) = (ax2 + bx2, ay2 + by2) = av + bv

Since all conditions are fulfilled, R2 is a vector space. Graphically, R2 can be
imagined as a space consisting of arrows. Adding vectors corresponds to pasting
arrows stem on point together. Multiplying vectors with scalars corresponds to
scaling the arrows, see figure 2.1. The same calculations work for any Rn with
n finite. Hence all Rn with n <∞ are vector spaces (nothing is said in the case
n =∞ here).

Figure 2.1: Left hand side: The vector v together with scaled versions 2v and
−v. Right hand Side: The vectors a and b and their sum a+ b.

The next example will not be as well-known, but after the definitions it will
be as obvious that it constitutes a vector space.

Example 2.3. Let F (R→ R) denote all functions from R to R. If f, g are two
functions in F (R→ R) and a ∈ R (C) then we define (f + g)(x) := f(x) + g(x)
and (a · f)(x) := af(x). It is very easy to check all the vector space axioms. I
will only proof the third and fourth condition here
• Let O(x) := 0 for all x ∈ R, then (f +O)(x) = f(x) +O(x) = f(x) + 0 =
f(x). Hence O is the zero in the function space F (R→ R).

• Let g(x) := −f(x), then (f + g)(x) = f(x) + g(x) = f(x) + (−f(x)) =
f(x)− f(x) = 0 = O(x). Hence g is the negative vector to f .

F (R → R) (probably) can not be imagined like the R2 with vectors. Instead
this vector space is easily imaginable if on thinks how the two operations work
on the functions. “+” adds two functions pointwise, “·” scales a function.
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Definition 2.4. A vector space which consists of functions is called function-
space.

Example 2.5. Further examples of vector spaces are:
• The set ` of series (a0, a1, a2, a3, · · · ) with ai ∈ R (C). This vector space

can be seen as an infinite dimensional generalisation of the R2 (C2) vector
space above.

• The complex numbers C. These can be seen as a vector space over R.
• The polynomials Pn = a0 + a1x + a2x

2 + · · · + anx
n, either with finite

degree n <∞, but also with infinite degree n =∞. This vector space can
be seen as an finite dimensional Rn if n <∞ or as the space of series ` if
n =∞.

In some vector spaces we can define a function which measures vectors, e.g.
determines their length. These spaces are called Banach spaces.

Definition 2.6. Let V be a vector space together with a function called norm
||·|| : V → R which assigns a real number to every vector. The norm must have
the following properties, let v, w ∈ V:
• If ||v|| = 0 then v = O
• Absolute scalability: ||av|| = |a| ||v|| for every a ∈ R (C)
• Triangle inequality: ||v + w|| ≤ ||v||+ ||w||

If the space is complete (i.e. every Cauchy sequence converges) then this space
is called a Banach space.

Example 2.7. A norm for R2 is (x, y)7→
√
x2 + y2. Other norms would be

(x, y) 7→ |x|+ |y| and (x, y) 7→ max{|x| , |y|}.

Some vector spaces can be drawn using a coordinate system, like the R2 or
R3. A coordinate system consists of axes, which are the directions in which
the vector space extends. This directions are actually also vectors of the vector
space. If we generalize this concept, we arrive at the concept of (Schauder-
)bases.

Definition 2.8. Let V be a Banach space. Let B = {b1, b2, · · ·} ⊂ V be a
(particularly countable) subset of V. If every vector v ∈ V can be written as a
convergent sum (convergent in the norm of the space)

v = α1b1 + α2b2 + · · · with α1, α2, · · · ∈ R (C) (2.1)

and this representation is unique (i.e. if one has two representations v = α1b1 +
α2b2 + · · · = β1b1 + β2b2 + · · · with αi, βi ∈ R (C) then αi = βi for all i)
than B is a (Schauder-)basis for V. The numbers αi written as the sequence
(α1, α2, α3, · · · ) are called the coordinates of v in the basis B.

This condition has the following consequences
• If one vector is removed from B then there are vectors v ∈ V which cannot

be written as the sum (2.1). That means that really all vectors in B are
needed to generate the vector space V.

• If one vector is added to B, then the uniqueness in the definition does not
hold any more.

• If α1b1 + α2b2 + · · · = 0 then all αi = 0 (which follows directly from the
uniqueness).
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The number of elements in B does not need to be finite. If it is finite, then
all bases have the same quantity of elements. This number of vectors is called
the dimension of the vector space V. If it is infinite, then all bases have infinite
elements and we say the dimension is ∞.

To understand vector spaces and bases better we will look at the above
examples again.

Example 2.9. A basis for R2 can be B = {(1, 0), (0, 1)}. Proof: Let v = (x, y) ∈
V. We must be able to write v as a sum of vectors in B. v = x(1, 0) + y(0, 1) =
(x, 0)+(0, y) = (x, y). Check. Since this is the only solution, the representation
is unique too. This basis is called standard basis for R2.

If we add one vector (1, 1) to the basis B, then B cannot be a basis any more
according to the previous remark. Indeed, let v = (2, 3). Then we can write
v = 2 · (1, 1) + 1 · (0, 1) but also v = 2 · (1, 0) + 3 · (0, 1).

If we remove one vector, for example the second, there are vectors which
cannot be represented any more. For example, let v = (0, 4). We would need
(0, 4) = α(1, 0), hence we have the two equations

0 = α · 1
4 = α · 0

This can never be true, hence the set {(1, 0)} is no basis for R2 any more.
In figure 2.2 the point P is drawn in the R2 plane and two bases are used to

express the coordinates of the point. The first is the standard basis B = {b1, b2},
b1 = (0, 1) and b2 = (1, 0). The second basis is denoted with C = {c1, c2} where
c1 = (2, 4), c2 = (0,−1). The basis vectors are drawn in the left coordinate
system. In the right coordinate system we describe the point P = (2, 2) in two
different bases. We first see (the blue arrows): 2b1 + 2b2 = 2 · (1, 0) + 2 · (0, 1) =
(2, 0) + (0, 2) = (2, 2). Hence P has coordinates PB = (2, 2) in basis B. In Basis
C (the green arrows) the point is expressed as: 1c1−2c2 = 1 ·(2, 4)−2 ·(0,−1) =
(2, 4)− (0, 2) = (2, 2). Hence the Peach has coordinates PC = (1,−2) in basis C.
That shows, different bases yield to different representations of the same thing.

Figure 2.2: The point P in two different bases B = {b1, b2} (blue) and
C = {c1, c2} (green).

Example and Definition 2.10. Function spaces F do not have a Schauder-
basis in general. If we restrict ourselves to functions with certain properties,
there are spaces with a Schauder-basis.
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Let L2[0, 2π) be the space of square integrable functions, i.e.∫ 2π

0

|f(x)|2 dx <∞

from the interval [0, 2π) to R (C). This space has a norm which can be defined
as

||f || =

√∫ 2π

0

|f(v)|2 dx.

The set of functions Ak(x) and Bk(x)

Ak(x) =
1

π
cos(kx) with k ∈ N ∪ {0}

Bk(x) =
1

π
sin(kx) with k ∈ N \ {0} (2.2)

forms a basis (with this norm) (a proof can be found in any book about harmonic
analysis). These are infinitely many functions, hence the vector space is infinite
dimensional. We will see these functions again, because they are the core of the
Fourier transform.

Figure 2.3: Left hand side: The function f with coordinate sequence
(βk)k>0 = (2, 0, 0, · · · ) and all coefficients αi for the Ai functions zero. I.e.
f(x) = 2 sin(x). Right hand side: The function g with coordinate sequence

(βk)k>0 = (1, 0.5, 0.25, 0.125, 0, 0, · · · ) and all coefficients αi for the Ai
functions zero. I.e.

g(x) = sin(x) + 0.5 ∗ sin(2x) + 0.25 ∗ sin(3x) + 0.125 ∗ sin(4x)

Example 2.11.

• A basis for the vector space C over R is B = {1, i}.

• A basis for the sequence space ` is the set B = {ek|k > 0}. The ek are the
sequences (0, 0, · · · , 1, 0, 0 · · · ) where the 1 stands on the kth position.

In some vector spaces (R2, R3) we can measure lengths and angels. This is
very useful since it allows us to define what orthogonality means. I will skip the
motivation why length and angels can be measured that way.
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Definition 2.12. Let V be a vector space. An operation 〈·, ·〉 : V × V → R
(C) taking two vectors of V and associating them to a real number (complex
number) is an inner product (also scalar product and dot product) if the following
conditions hold, let v1, v2 ∈ V:
• Conjugate symmetric: 〈v1, v2〉 = 〈v2, v1〉. The overline denotes complex

conjugation. If the inner product is real, then the conjugation has no
effects.

• Linear in the first argument: 〈av1 +v2, v3〉 = 〈av1, v3〉+ 〈v2, v3〉. Together
with the first condition it follows that it is conjugate linear in the second
argument.2

• 〈v, v〉 ≥ 0 for all v ∈ V.
• If 〈v, v〉 = 0 then v must be O.
With the inner product one can define a norm via, let v ∈ V:

||v|| :=
√
〈v, v〉

This fulfils all conditions needed for a norm. If one thinks of the inner product
as a product with real numbers then ||v|| =

√
〈v, v〉 =

√
v · v =

√
v2 = |v|. Thus

in the case of simple numbers, the norm and the absolute value are the same.
The angel ^ between two vectors v1, v2 is defined as

^(v1, v2) = arccos

(
|〈v1, v2〉|
||v1|| ||v2||

)
If the vector space is real, then we do not need the absolute value in the fraction.
If the inner product in the formula 〈v1, v2〉 is zero, than the arccos is 90◦. Hence
we define that two vectors are normal onto each other if their inner product is
zero.

Definition 2.13. A vector space with an inner product which is complete (i.e.
every Cauchy sequence converges) is called Hilbert space.

The inner product induces the concept of geometry into the vector space.
The same vector space can have different geometries by using different inner
products. The inner product is a very special property and there are a lot of
vector spaces where one cannot find one. But fortunately the spaces we need
for the Fourier transformation have one. We examine again our examples.

Example 2.14. The space R2: Let vi = (xi, yi). The map 〈v1, v2〉 := x1x2 +
y1y2 defines an inner product. Proof:
• Symmetry: 〈v1, v2〉 = x1x2 + y1y2 = x2x1 + y2y1 = 〈v2, v1〉
• Linearity: 〈av1 + v2, v3〉 = (ax1 + x2)x3 + (ay1 + y2) = · · · = a〈v1, v3〉 +
〈v2, v3〉

• 〈v, v〉 = xx+ yy = x2 + y2 > 0
• 0 = 〈v, v〉 = x2 + y2 = 0⇒ x = 0 and y = 0.

The length of the vector v = (1, 2) is ||v|| =
√

12 + 22 =
√

5. The angle between
v1 = (1, 2) and v2 = (4,−3) is

^(v1, v2) = arccos

(
|−6|√
5
√

25

)
' arccos(0, 537 · · · ) ' 57, 5◦

2Sometimes linearity is defined for the second argument.
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For this inner product the formulas for lengths and angels are the same as the
formulas learned in school. Hence the geometry of R2 with this inner product
is the usual geometry.

The map 〈v1, v2〉 := x1x2 + 2y1y2 also defines an inner product. Using this
inner product the vectors (0, 1) and (1, 0.5) are normal onto each other, but are
not normal in the space with the former inner product.

R2 with any of these inner products is complete, therefore they are a Hilbert
space.

Remark 2.15. Since the inner product 〈x, y〉 in Rn equals the projection of y
onto x times the length of x the inner product can be seen as a projection.

Example 2.16. The function spaces: Not all function spaces have an inner
product. The L2[0, 2π) has one and is complete (without proof), hence it is a
Hilbert spaces. Let f, g ∈ L2[0, 2π), then

〈f, g〉 =

∫ 2π

0

f(x)g(x) dx

is an inner product. If the functions are real valued, the complex conjugation
can be omitted.

Since continuous function over a bounded interval are square integrable, we
can define an inner product for the functions Ai and Bi defined in 2.2. We are
going to calculate the length of these vectors and the angels between them. We
start with a recapitulation of some trigonometric identities. Let k, l ∈ N \ {0}
(The calculations are trivial respective not needed for zero).

cos((k + l)x) = cos(kx) cos(lx)− sin(kx) sin(lx) (2.3)

sin((l + k)x) = sin(lx) cos(kx) + cos(lx) sin(kx) (2.4)

This adds up to

cos((k + l)x) + cos((k − l)x) = 2 cos(kx) cos(lx) (2.5)

sin((l + k)x) + sin((l − k)x) = 2 sin(lx) cos(kx) (2.6)

From this it follows that∫ 2π

0

cos(kx) cos(lx) dx =
1

2

∫ 2π

0

(
cos((k + l)x) + cos((k − l)x)

)
dx

=
1

2(k + l)
sin((k + l)x)

∣∣∣∣2π
0

+
1

2(k − l)
sin((k − l)x)

∣∣∣∣2π
0

=
1

2(k + l)

(
sin
(
(k + l)2π

)
− sin

(
0
))

+

1

2(k − l)

(
sin
(
(k − l)2π

)
− sin

(
0
))

= 0 for all k 6= l

Since sin(x) = cos(x+ π/2) the same applies to 〈Bk, Bl〉. A similar calculation
using (2.6) shows ∫ 2π

0

cos(kx) sin(lx) dx = 0 for all k 6= l

13



If l = k and using (2.6) we get sin(2kx) = 2 sin(kx) cos(kx) and therefore∫ 2π

0

cos(kx) sin(kx) dx =
1

2

∫ 2π

0

sin(2kx) dx = 0

At last we compute (using (2.5)).∫ 2π

0

cos(kx)2 dx =
1

2

∫ 2π

0

cos(2kx) + 1 dx =
0

2
+

2π

2
= π

the same holds for sin(kx). Summing up we get for k, l > 0 (Remember the Ak
and Bk functions have a prefactor of 1/π).

〈Ak, Al〉 =

∫ 2π

0

cos(kx) cos(lx) dx =

{
0 if k 6= l

1 if k = l

〈Ak, Bl〉 =

∫ 2π

0

cos(kx) sin(lx) dx = 0

〈Bk, Bl〉 =

∫ 2π

0

sin(kx) sin(lx) dx =

{
0 if k 6= l

1 if k = l

〈A0, A0〉 = 2

That means, all basis vector are mutually normal onto each other. This is
a quite astonishing property. In figure 2.4 we can see some of the products
Ak(x) ·Bl(x), which occur in the integrals, plotted. It is easily spotted that the
integral of these functions is likely to be zero for two different basis vectors and
nonzero for the same basis vectors.

Example 2.17. Let `2 be the space of series c ∈ `2 such that
∑∞
i=0 |ci|

2
< ∞

then

〈c1, c2〉 =

∞∑
i=0

c1 · c2

is an inner product. It is easily seen that the basis vectors ek from example 2.9
have the property that

〈ek, ek〉 =

{
0 if k 6= l

1 if k = l

The property that all basis vectors are mutually normal onto each other is
very useful, hence bases with such a property have a special name.

Definition 2.18. Let B be a basis for the vector space V. If the basis vectors
bi in B have the property that3

• all bi are normal on each other, i.e. 〈bi, bj〉 = 0 ∀i 6= j,
• all bi have a length of 1, i.e. ||bi|| = 1 ∀i,

then the basis is called an orthonormal basis (ONB), if only the first property
holds, the basis is called an orthogonal basis. Orthogonal bases can be easily
made orthonormal via scaling the basis vectors about their length.

3The charater ∀ means “for all”.
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Figure 2.4: Plotted are various products of functions from the basis defined
in(2.2). Only the functions A3 ·A3 and B2 ·B2 have an integral unequal zero,

and hence 〈A3, A3〉, 〈B2, B2〉 6= 0.

With this nomenclature the basis for the above given function space L2[0, 2π)
with basis functions Ak and Bk is only an orthogonal basis, because the vector
A0 has length 2. The given basis for `2 is an orthonormal basis. The standard
basis for R2 is also an orthonormal basis.

Remark 2.19. If B = {b1, b2, b3, · · ·} is an ONB the coordinates of a vector
v in this basis can be computed easily. They are 〈v, bi〉 and the vector can be
written as

v =

∞∑
i=0

〈v, bk〉bk (2.7)

since, let v =
∑∞
i=0 βibi (this representation exists since B is a basis). If we

compute 〈v, bk〉 = 〈
∑∞
i=0 βibi, bk〉 =

∑∞
i=0 βi〈bi, bk〉 = βk. Hence 〈v, bk〉 is

exactly βk and therefore v =
∑∞
i=0〈v, bk〉bk.

Example 2.20. This example is another orthonormal basis for R2. We consider
the basis B = {b1, b2}, b1 = (1/

√
2, 1/
√
2), b2 = (1/

√
2,−1/

√
2). We first check that

the basis vectors are orthonormal.

〈b1, b1〉 = 〈(1/√2, 1/
√
2) , (1/

√
2, 1/
√
2)〉 = 1

2 + 1
2 = 1

〈b1, b2〉 = 〈(1/√2, 1/
√
2) , (−1/

√
2, 1/
√
2)〉 = −1

2 + 1
2 = 0

〈b2, b2〉 = 〈(−1/√2, 1/
√
2) , (−1/

√
2, 1/
√
2)〉 = 1

2 + 1
2 = 1
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We test equation (2.7) with the vector v = (2, 3). If we compute the inner
product of v with the basis vectors we will get the coordinates of v in basis B.
I will denote the coordinates of v with vB,1 and vB,2.

vB,1 = 〈v, b1〉 = 〈(2, 3), (1/
√
2, 1/
√
2)〉 = 2√

2
+ 3√

2
= 5√

2

vB,2 = 〈v, b2〉 = 〈(2, 3), (1/
√
2,−1/

√
2)〉 = 2√

2
+ −3√

2
= −1√

2

To test if this is right, we enter the coordinates and compute the sum of the
coordinates with the basis vectors. Then we will get the original vector v.

vB,1b1 + vB,2b2 = 5√
2
(1/
√
2, 1/
√
2) + −1√

2
(1/
√
2,−1/

√
2)

= (5/2, 5/2) + (−1/2, 1/2) = (4/2, 6/2)

= (2, 3) = v

Example 2.21. Since we already know, that the functions Ak and Bk are an
orthogonal basis for L2[0, 2π), we can write all functions f ∈ L2[0, 2π) as (due
to equation (2.7)):

f(x) =
a0
2

+

∞∑
k=1

akAk(x) + bkBk(x) with

ak :=〈f,Ak〉, bk := 〈f,Bk〉 (2.8)

The division of a0 by two is due to the fact that ||A0|| = 2. The series (ai)i≥0 and
(bi)i>0 are called the sine-cosine-Fourier Series of f . Using complex numbers
we can put the the Fourier Series in equation (2.8) in a more compact form.
Euler’s identity4 states

eix = cos(x) + i sin(x)

e−ix = cos(x)− i sin(x) (2.9)

or rewritten

cos(x) =
(
eix + e−ix

)
/2

sin(x) =
(
eix − e−ix

)
/(2i). (2.10)

4A proof of Euler’s identity: We start with the Taylor expansions of sin, cos and exp.

sin(x) = x− x3/3! + x5/5!− x7/7! + x9/9!− · · ·

cos(x) = 1− x2/2! + x4/4!− x6/6! + x8/8!− · · ·

ex = 1 + x + x2/2! + x3/3! + x4/4! + x5/5! + · · ·

and thus

i · sin(x) =x− ix3/3! + ix5/5!− ix7/7! + · · · = x + (ix)3/3! + (ix)5/5! + (ix)7/7! + · · ·

cos(x) =1− x2/2! + x4/4!− x6/6! + · · · = 1 + (ix)2/2! + (ix)4/4! + (ix)6/6! + · · ·

cos(x) + i · sin(x) =1 + (ix) + (ix)2/2! + (ix)3/3! + (ix)4/4! + (ix)5/5! + · · ·

The last line equals the series eix above. Hence

cos(x) + i · sin(x) = eix
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Finally

f(x) =
1

π

(
a0
2

+

∞∑
k=1

akcos(kx) +

∞∑
k=1

bksin(kx)

)

=
1

π

(
a0
2

+

∞∑
k=1

ak
eikx + e−ikx

2
+ bk

eikx − e−ikx

2i

)

=
1

2π

a0 +

∞∑
k=1

ake
ikx + ake

−ikx +
bk
i︸︷︷︸

−ibk

eikx−bk
i︸︷︷︸

+ibk

e−ikx


=

1

2π

(
a0 +

∞∑
k=1

eikx(ak − ibk) + e−ikx(ak + ibk)

)

=
1

2π

(
a0 +

−∞∑
k=−1

ei(−k)x(a−k − ib−k) +

∞∑
k=1

e−ikx(ak + ibk)

)

=
1

2π

a0 +
∑
k 6=0

e−ikxck

 =
1

2π

∞∑
k=−∞

cke
−ikx

where we defined

ck = ak + ibk if k > 0

ck = a−k − ib−k if k < 0

ck = a0 if k = 0

This seemingly absurd definition makes sense, since the ck equal:

ck =
1

2π

∫ 2π

0

f(y)e−iky dy

which is not hard to check (using (2.9)). Finally we can write the Fourier series
in a very compact form.

2.2 Fourier Series and Fourier Transform

Definition 2.22. The Fourier Series of a function f ∈ L2[0, 2π) is defined as
the series

(ck)k∈Z =
1

2π

∫ 2π

0

f(y)e−iky dy

and f can be written as

f(x) =

∞∑
k=−∞

cke
ikx
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If we introduce the function Ck(x) = 1
2π e
−ikx we can express the formulas using

the inner product

f(x) =

∞∑
k=−∞

〈f, Ck〉Ck(x)

ck = 〈f, Ck〉

The (ck)k are called Fourier coefficients.

Remark 2.23. If the function is not defined on [0, 2π) but on [−T/2, T/2) then
the Fourier Series is

f(x) =

∞∑
k=−∞

cke
2πi
T kx

ck =
1

T

∫ T/2

−T/2
f(y)e

−2πi
T ky dy (2.11)

Remark 2.24. Functions defined on an interval [a, b) can be identified with
periodic functions with period P = b − a by repeating it. Periodic means
f(x + P ) = f(x) for all x ∈ R. See figure 2.5 for a visual explanation. In the
same manner we can identify periodic functions with period P with functions
defined on [0, P ).

Figure 2.5: Periodising a function by repeating it

Remark 2.25. If the function is not periodic (which is usually the case with
music5) but decays fast enough (e.g. f ∈ L2), we can say the period of the
function is infinite. We compute what that means for our definition of the
Fourier Series in equation (2.11) if T would equal ∞.6

f(x) =

∞∑
k=−∞

cke
ikx =

∞∑
k=−∞

1

T

∫ T/2

−T/2
f(y)e

−2πi
T ky dy e

2πi
T kx

=

∞∑
k=−∞

1

T

∫ ∞
−∞

f(y)e−2πi
k
T y dy e2πi

k
T x (2.12)

If we define the integral

f̂(ν) =

∫ ∞
−∞

f(y)e−2πiνy dy

5Not considering Vexations by Satie.
6One cannot do calculations with∞. So one must be careful and this here is quite heuristic.
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and set ν = k/T , than (2.12) takes the form of a Riemann sum

∞∑
k=−∞

1

T
f̂( kT )e2πi

k
T x

which goes towards the following integral as T goes towards ∞.∫ ∞
−∞

f̂(ν)e2πiνx dx

Finally we obtain

Definition 2.26. The Fourier transform of a function f (f ∈ L2(R)) is

f̂(y) =

∫ ∞
−∞

f(x)e−2πiyx dx

f(x) =

∫ ∞
−∞

f̂(y)e+2πiyx dy

f̂ is called the Fourier transform of f. There are also the notations f̂(y) =
(Ff)(y) = (Ff(x))(y) = F (y) in use. Note that the two equations only differ
in the sign of the exponent. The first is −2πiyx, the second is +2πiyx.

Figure 2.6: The Fourier transform of Help by the Beatles

The Fourier Series and the Fourier transform are very closely related. The
Fourier coefficients of a periodised function equals the value of the Fourier trans-
form of the original function up to a constant. Because a computer cannot
compute infinite long integrals, which is necessary in the case of the Fourier
transform, one usually computes a kind of Fourier Series on the PC. Because of
the strong relationship between these two methods, this is often called “Fourier
transform” too.

If we apply the Fourier transform to a whole musical piece we can see the
information about the magnitudes of the frequency components of the whole
piece easily, though all spatial information is hidden in the phase of the co-
efficients. Since music7 is very seldom stationary (in the sense that it widely

7Not consideringASLSP by John Cage.
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changes over time), it is not of much use to analyse a whole piece at once. See
for example figure 2.6 the magnitude Fourier transform of the song Help by
the Beatles is plotted. The x-axis describes the frequencies and the y-axis the
amplitudes. In that picture we can only see, which frequencies are used often
by the Beatles, but we cannot localize any given note any more. One can say,
the Fourier transform somehow averages the over the time.

Therefore it is useful to cut music into small pieces, each only some millisec-
onds long, and do a Fourier transform on every bit. That way we can see all
of the frequencies at certain time intervals. This method is called Short Time
Fourier transformation which will be discussed later. Beforehand the concept
of frames must be introduced.

2.3 Frames

In the following I will often speak of signals, being be the functions to be anal-
ysed and we suppose that they are well behaved (like continuous, integrable or
whatever we need else).

ONBs have a lot of useful properties (they are orthonormal, the coefficients
in the expansion (2.1) are unique, they are a minimal set which spans the vector
space, . . . ) but they also have disadvantages. If one element of the basis is lost,
the remaining set does not span the vector space any more (i.e. there are vectors
which cannot be written as a sum of basis vectors). Similar vectors can have
very different representations, e.g. noisy signals, spatial translated vectors, et
cetera. When using frames instead of vectors some of theses disadvantages
can be avoided. A frame can be seen as an overcomplete basis. They are
robust against input perturbations like quantization effects, can be translation
invariant and much more. The main advantage of frames is, that the frame
elements (usually called atoms) can be adapted to the input signal. E.g, if
one has music using a 12 tone scale, one can adapt the atoms to represent
the tones of that 12 tone scale. If one wants to analyse speech, one could
choose atoms which resemble vowels and consonants. Also unequally spaced
sampling is possible. Disadvantages are, the loss of orthogonality of the basis
vectors and no uniqueness of the coordinate coefficients in general, which also
leads to redundancy (more coefficients needed than in the orthogonal case to
represent any given signal). A big disadvantage is, that the frame cannot be
used to resynthesise the original signal - instead a dual frame must be used
and its computation is not trivial. For a long time the only way to compute it
was using iterative procedures. In 1990 Wexler and Raz [16] proved a duality
condition which allowed to compute the dual frame in the discrete case via
solving a system of linear equations. Finally frames are computational more
costly.

Definition 2.27. Let I be a countable or finite index set. The family of func-
tions (ϕi)i∈I over the Hilbert space H are called a frame for H if there exist
constants 0 < A ≤ B <∞ such that

A ||f ||2 ≤
∑
i∈I
|〈f, ϕi〉|2 ≤ B ||f ||2 (2.13)

If A = B then the frame is called a tight frame. In that case one can assume
without loss of generality A = B = 1.
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To retrieve the original vector f one in general needs the dual frame denoted
with (γi)i∈I . It then holds that (proof in [3, p. 40])

f =
∑
i∈I
〈f, ϕi〉γi (2.14)

This sum is called the signal expansion of f . The coefficients

ci = 〈f, ϕi〉 (2.15)

are called the frame expansion coefficients or frame analysis of f.

Remark 2.28.

• If the frame is tight the frame equals its dual frame [3, page 42].

• From equation (2.13) it can be seen that any unitary operation on a
frame yields a new frame with the same frame bounds. Unitary oper-
ators are bijective linear operators between Hilbert spaces and preserve
the inner product, i.e. let U : H1 → H2 be unitary and f, g ∈ H1, then
〈Uf,Ug〉H2 = 〈f, g〉H1

• If B is an ONB for H than B is a frame for H with A = B = 1.

Example 2.29. The Mercedes Frame (figure 2.7) for R2. Let w1 = (0, 1),
w2 = (

√
3/2,−1/2), w3 = (−

√
3/2,−1/2) and v = (v1, v2). This an tight frame since

for v ∈ R2

3∑
n=1

〈v, wn〉2 = (0 · v1 + v2)2 +

(√
3

2
v1 −

1

2
v2

)2

+

(√
−3

2
v1 −

1

2
v2

)2

=
3

2
v21 +

3

2
v22 =

3

2
||v||2

Hence all v ∈ R2 satisfy

v =

3∑
n=1

〈v, wn〉wn

Figure 2.7: The Mercedes frame.
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Chapter 3

Linear Time-Frequency
Representations

3.1 Short Time Fourier Transform

The STFT works as follows: We first cut the signal into pieces via multiplica-
tion with time shifted window functions. Window functions are functions from
R → C. They usually have the shape of a bump and are symmetric respective
the y-axis. We will often use continuous and compactly supported (i.e. zero
outside some interval) functions. The easiest window function has the shape of
a rectangle (and therefore is called Rectangular Window). This function is zero
until some point, then it jumps onto 1, and at a second point it jumps back to
zero where it stays. Applying this window to a signal is equivalent to cutting
away everything before and everything after these two points. After window-
ing the signal, a Fourier transform of each portion is applied. To resynthesise
we inverse Fourier transform and multiply with possibly different time shifted
window functions.

Figure 3.1: Windowing of a signal using a smooth window. Image taken
from [8]
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Windowing can can introduce problems. First, the window function can
induce discontinuities of the cut signal. Second, it introduces frequencies into
the signal which are not present, since windowing a function with a window of
length T makes this function T -periodic when represented by Fourier series..
This effect is called spectral leakage. Appropriate choice of the window function
can only reduce the leakage. Both problems are depicted in figure 3.2

Figure 3.2: Windowing of a signal using the rectangular window.

Definition 3.1. Let s be a signal, h a window function. The (uniform) STFT
of s with respect to h, S : L2(R) → (R2 → C) is obtained by applying the
operator S to the signal s:

[Ss](τ, ν) =

∫ +∞

−∞
s(t)h(t− τ)e−2πiν(t−τ) dt with τ, ν ∈ R

The overbar denotes complex conjugation. The conjugation of the window
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function will make notation easier afterwards. Rewriting this leads to

[Ss](τ, ν) =

∫ ∞
−∞

s(t)e−2πiν(t−τ)h(t− τ) dt

From this notation, one can also interpret the STFT as the the output signal
around time τ of a bandpass filter centred at frequency ν. Windows haves a
certain duration in time (in other words they work with the signal on some
time interval and not only at one point), but they also have a certain interval
of frequencies on which they are operating. This interval of frequencies is called
bandwidth of the window. To analyse the signal with a good time resolution we
need short windows, for a good frequency resolution we need windows with a
narrow bandwidth. Unfortunately we cannot have both at the same time. This
is due to the uncertainty-principle. Without loss of generality we can suppose f
is normalized, i.e. ||f || = 1. From Plancherel’s theorem it follows that f̂ is also
normalized. Then the following inequality holds (supposed everything exists):(∫ ∞

−∞
|t f(t)|2 dt

)(∫ ∞
−∞

∣∣∣ν f̂(ν)
∣∣∣2 dν) ≥ 1

16π2
(3.1)

The first factor denotes the variance of the window in time. The second
factor analogously denotes the variance of the Fourier transform of the window.
A proof can be found in any harmonic analysis book, for example [14, page 133]

There is a third way to read the STFT’s definition. For that, we introduce
the following two operators:

Definition 3.2. Let h : R→ C. The time shift operator Tτ and the modulation
operator Mν (τ, ν ∈ R) are defined as

Tτh(t) = h(t− τ)

Mνh(t) = h(t) · e2πiνt

Furthermore we will use the abbreviation:

hτ,ν = TτMνh

h0,0 therefore equals h. The modulation operator works as a frequency shift of
the window in the frequency domain since (FMνh)(ω) = (Fh)(ω− ν). We will
further identify the time-frequency shifted window hτ,ν with the corresponding
point (τ, ν) ∈ R2 in the TF-plane.

With this notation we can rewrite the STFT as follows

[Ss](τ, ν) =

∫ +∞

−∞
s(t)h(t− τ)e−2πiν(t−τ) dt =

∫ +∞

−∞
s(t)hτ,ν dt = 〈s, hτ,ν〉

That way we can interpret the STFT as the projection of the signal onto the
shifted and modulated windows. These windows can be interpreted as points
(actually regions) in the time-frequency plane. We will utilize the third point to
generalize the STFT. Because of the importance, I repeat the three possibilities
of how to understand the STFT [3]:

• At a specific time, the STFT is the Fourier transform of the signal multi-
plied by a local analysis window function.
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• At a specific frequency, the STFT is essentially the output signal of a
bandpass filter centered at the respective frequency.

• At a specific point in the TF plane, the STFT is the inner product of the
signal with a version of an analysis window TF-shifted to the respective
TF point.

Before going on, I present the song Help (this time only the beginning)
analysed via the Short Time Fourier transform (STFT). At time t = 10 s one
can easily see the striking Hee

eeeelp exclamation at the beginning of the song
(figure 3.3).

Figure 3.3: A STFT of Help by the Beatles

3.2 Gabor Expansion

The Gabor Expansion GE (also called Gabor transform, Gabor Analysis, Phase
Vocoder) is closely related to the STFT. While in the STFT τ and ν for time-
frequency shifting the window function are continuous, they are discrete in
the Gabor Expansion. Therefore, the Gabor Expansion provides a partitioning
(tiling) of the the TF-plane into rectangles of equal size [3]. Gabor suggested
using the Gaussian bell function for the windows and a so called critical tiling,
which means that the product of the time shift parameter a and the frequency
shift parameter b equals one. Later on, this was generalized to other windows
and other lattice densities. Concerning the two parameters, a distinction is
made between three types
• a · b < 1: oversampling
• a · b = 1: critical sampling
• a · b > 1: undersampling

25



Critical sampling results in poor numerical stability but uniqueness of the co-
efficients. Oversampling yields better stability at the cost of non-unique Gabor
coefficients. In the case of undersampling the time-frequency shifted windows
are not a frame any more and thus are of no interest as the signal cannot be
recovered from them. A proof can be found in [11].

Figure 3.4: Tiling of the time-frequency plane provided by the Gabor
expansion. (a) Critical sampling, (b) oversampling, (c) undersampling. Image

taken from [3]

The set of functions given by a window function h together with two param-
eters a and b

G(h, a, b) = {hna,qb|n, q ∈ Z} = {TnaMqbh|n, q ∈ Z}

is called Gabor System. n will be called time index, q will be called frequency in-
dex. A Gabor System is not an orthonormal basis in general. Hence statements
about existence and uniqueness of the Gabor coefficients are rather involved.
It turned out that the concept of frames can answer this questions in a satis-
factory manner. A Gabor system that is a frame is called a Gabor Frame or
Weyll-Heissenberg Frame. In the setting of Gabor frames, I will use the abbre-
viation hn,q = hna,qb. The dual frame to a Gabor frame is itself a Gabor frame

generated by a dual window h̃. If the window h has a finite length a ≤ l <∞,
then h̃ is a dual window to h if their product overlap-adds to one, i.e.

∞∑
r=−∞

h(t− rl)h̃(t− rl) = 1 ∀t ∈ R

If h = h̃ =
√
ϕ where ϕ is a function which overlap-adds to one, i.e.

∑∞
r=−∞ ϕ(t−

rl) = 1 for all t, this is clearly fulfilled. Also if one of the windows overlap adds
to one, and the other is a rectangular window (with an appropriate window
length) this is fulfilled.

In section 3.1 we saw that due to the uncertainty principle it is impossible
to have functions with small bandwidth and small time support. In the case of
the GE the uncertainty is much bigger. If G = {hn,q} is a Gabor frame such
that ab = 1, i.e. critical sampling, then(∫ ∞

−∞
|t h(t)|2 dt

)(∫ ∞
−∞

∣∣∣ν ĥ(ν)
∣∣∣2 dν) = +∞
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The statement, named Balian-Low theorem, says if one of the factors is finite,
the other must be infinite. A good proof can be found in [2].

Due to that theorem, frames were sought-after which are orthogonal and
consist of atoms with finite uncertainty.

3.3 Wavelet Transform

Like the GE, the Wavlet transform (WT) provides an expansion of the signal.
The TF tiling of the WT is quite different from that of the GE. The WT provides
a tiling where lower frequencies are analysed with lower time resolution and
higher frequencies with higher time resolution, where the GE divides the TF
plane into rectangles of the same size. Figure 3.5 compares the GE and the
WT tiling. The WT has some advantages over the GE. It is more natural to
our human ear in the sense, that our ear has a coarser frequency resolution
for higher frequencies, too. That means, the good frequency resolution of the
Gabor Expansion for high frequencies is unnecessary for our ears, on the other
hand our ear has a much finer frequency resolution for low frequencies than the
STFT usually does.

Figure 3.5: Tilings of the time-frequency plane corresponding to GE (a) and
WT (b). Image taken from [3].

The frame for the Wavelet transform is generated by shifting and scaling a
window function (usually called mother wavelet) instead of shifting and modu-
lating as in the GE case. Let 0 6= ψ ∈ L2(R) such that∫ ∞

−∞
ψ(t) dt = 0

and the admissible condition ∫ ∞
0

∣∣∣ψ̂(ν)
∣∣∣2

ν
dν <∞

is fulfilled. Then the family of wavelet atoms {ψτ,λ|τ ∈ R, λ ∈ R+} is defined
as

ψτ,λ(t) =
1

λ
ψ

(
t− τ
λ

)
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The Wavelet transformation (WT) of f ∈ L2(R) with respect to ψ is defined as

Wψf(τ, λ) = 〈f, ψτ,λ〉 =
1

λ

∫ ∞
−∞

f(t)ψ
(
t−τ
λ

)
dt

An introduction to wavelet theory can be found in [6] and [1]
Other non-constant tilings of the TF-plane building up on the Wavelet trans-

form were subsequently introduced [5][13][15][17].

3.4 Redressed Warped Gabor Expansion

Recently, in [9] a type of Gabor Expansion with warped frames was introduced,
which allows for a tiling of the TF plane into arbitrary frequency bands and time
intervals. The STFT’s uniform bands are transformed into non-uniform bands
via a frequency and a time map, i.e. monotonically increasing functions remap-
ping the frequency axis and the time axis. However, since time and frequency
are not independent variables, the time mapping influences the frequency as
well as the frequency mapping influences the time. This would lead to a skewed
tiling of the TF-plane as artistically drawn in figure 3.6 which makes perfect
reconstruction of signals more complicated and renders applications for visu-
alizing sound unusable. In the same work it has been shown, that given that
the atoms have limited bandwidth, the frequency dependent time delays can
be redressed. Nevertheless, windows with limited support in frequency have
infinite time support, meaning they are useless for real-time computation. In a
subsequent paper Evangelista [7] proposed approximations and ideas for the de-
sign of nearly perfect reconstruction analysis and synthesis atoms, which allow
for the real-time computation of time-frequency representations on non-uniform
frequency bands.

Figure 3.6: Tiling of the time-frequency plane with warped Gabor atoms (a)
and redressed Warped Gabor atoms (b) together with the corresponding

warping map.
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Warping Gabor Frames

This section summarises the results presented in [7]. Let θ : R 7→ R be a strictly
monotone increasing function, s a signal. The frequency warping operation is
then completely characterized by a function composition operator in the fre-
quency domain

ŝw = ŝ ◦ θ,

If the warping map θ is one-to-one and a.e. differentiable, then a unitary form
of the warping operator can be defined by the frequency domain action(

Ûθs
)

(ν) =
√∣∣ dθ

dν

∣∣ŝ(θ(ν))

The pre-factor ensures that the energy of the window is preserved under warping
and is needed for U to be a unitary operation. To construct the redressed Gabor
system we start from a Gabor frame {ϕn,q}n,q∈Z with dual frame {γn,q}n,q∈Z

ϕn,q = TnaMqbh

γn,q = TnaMqbg

where h and g are dual windows. In the application we will use windows which
are dual to themselves, i.e. h = g and hence ϕ = γ. The warped frame is
obtained by the following observation:

s = U†θ

∑
n,q∈Z

〈Uθs, ϕn,q〉ϕn,q =
∑
n,q∈Z

〈s,U†θϕn,q〉U
†
θϕn,q

Uθ is unitary, hence U†θ = U−1θ = Uθ−1 . Defining the warped atoms as

ϕ̃n,q = Uθ−1ϕn,q.

the expansion (2.14) of the signal s reads

s =
∑
n,q∈Z

〈s, ϕ̃n,q〉ϕ̃n,q.

and the Fourier transforms of these warped atoms are

ˆ̃ϕn,q(f) =
√

dθ−1

df ĥ(θ−1(f)− qb)e−2πiθ
−1(f)na

The time shift factor e−2πiθ
−1(f)na is not linear in f ∈ R and therefore the atoms

bear frequency dispersive delays. Evangelista constructed a further warping
operation which linearises the delays in certain bands using the series (ηm,q)n

ηm,q(n) =

∫ +
1
2

− 1
2

√
dϑq
dν e

2πi(nν−mϑq(ν)), with n,m ∈ Z,

where ϑq : (− 1
2 ,+

1
2 ) 7→ (− 1

2 ,+
1
2 ) is an almost everywhere differentiable onto

and one-to-one map. This forms an orthonormal basis [4][12] and thus the
mapping D : `2(Z)→ `2(Z) defined as

Dc(m) = 〈c, ηm,q〉
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is unitary. The map ϑq can be extended over the entire real axis as congruent
modulo 1 to a 1-periodic function. The index q denotes dependence on the
band-index. Defining the redressed atoms as

˜̃ϕn,q =
∑
m

ηn,qϕ̃m,q

one obtains the signal expansion

s =
∑
n,q∈Z

〈s, ˜̃ϕn,q〉 ˜̃ϕn,q. (3.2)

and the Fourier transform of the redressed atoms become

ˆ̃̃ϕ(f) =
√

dθ−1

df

√
dϑq
dν

∣∣∣∣
ν=aθ−1(f)

ĥ(θ−1(f)− qb)e−2πinϑq(aθ
−1(f)). (3.3)

Hence, the effect of the dispersive delays would be counteracted if

ϑq(aθ
−1(f)) = dqf (3.4)

for any f ∈ R, where dq are positive constants controlling the time scale in each
frequency band. In this case, the Fourier transforms of the redressed atoms
becomes

ˆ̃̃ϕn,q(f) =

√
dq
a ĥ(θ−1(f)− qb)e−2πindqf . (3.5)

However, each map ϑ is constrained to be congruent modulo 1 to a 1-periodic
function, while the global warping map θ can be arbitrarily selected. Further-
more, having to be one-to-one in each unit interval, the functions ϑ can at most
experience an increment of 1 there. [7] This means, a perfect redressing is only
possible in a certain bounded interval, restricting this approach to atoms with
limited bandwidth (the so called painless case). Let us first examine the pain-
less case, for simplicity we assume that the bandwidth of h is Kb where K is a
positive integer, i.e. ĥ(f) = 0 for all |f | ≥ Kb/2. The equation (3.4) therefore
must be fulfilled for all f with

∣∣θ−1(f)− qb
∣∣ < Kb/2 because of (3.3) . In order

to do that, we construct the map ϑq as follows. We first periodise the function
θ in the interval [ν−, ν+), with ν− = −Kb2 − qb and ν+ = Kb

2 − qb. Then we
scale it so that is has a period of 1 and only experience an increment of 1 in
each period.

Rewriting equation (3.4) with ν = θ−1(f) yields

ϑq(aν) = dqθ(ν) for θ(−Kb2 + qb) < ν < θ(Kb2 + qb). (3.6)

With figure 3.7 it is easy to determine the constant’s a and dq value. In the ν
direction we need to scale it at least by Kb, which yields

1/a ≥ Kb (3.7)

In the θ(ν) direction we need to scale it at least by the bandwidth of the qth

warped window Bq = θ(ν+)− θ(ν−) which yields

1/dq ≥ Bq = θ(ν+)− θ(ν−) (3.8)
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The first condition 3.7 does not depend on q and is satisfied if we assign
sufficient oversampling. For the second condition 3.8 we need to choose dq ≤
1/Bq. Also, if there is an upper bound to our bandwidths we can choose identical
d = supq dq. If our signal is band-limited we can choose d = maxq dq since we
only need a finite number of bands. Then, all samples would be aligned to a
uniform time scale throughout frequencies. Nevertheless, this is not possible for
real-time purposes, since it increases the computational load too much.

Figure 3.7: The function θ and how to scale it.

In the general case, a perfect time realignment of the components is not
guaranteed. Locally, within essential bandwidths of the warped modulated win-
dows it is possible to linearise the phase of the complex exponentials. The
greyed slanted ends of the TF-boxes in figure 3.6 shall visualize this. The black
boxes depict the essential bandwidth and length of the atoms, the greyed slanted
ends visualize the overlap of the atoms. Anyway, by construction the redressed
warped Gabor systems are guaranteed to be frames for any choice of the maps
ϑq satisfying the stated periodicity conditions.

Windows with unbounded support

For real-time applications, through warping another problem emerges. The
modulated frequency warped windows will not have compact support in the
time domain in general, even if the original windows have had this property.
Evangelista discusses two approaches for this problem. The first is to linearise
the map θ around the point θ(qb) in equation (3.5). This is possible since θ is
differentiable. The warped windows then are

˜̃ϕn,q(t) = θ′(qb)h(θ′(qb)(t− na))e2πiθ(qb)(t−na)

It turns out that this approach does not lead to good reconstruction.
The second method is to compute the windows and to truncate them af-

terwards to a desired length. Because it is unlikely that we find a closed
analytical form of the Fourier-transformed-warped-inverse-Fourier-transformed
window, we have to compute it numerically, thus using the Discrete Fourier
transform (DFT) for the Fourier transformations. The DFT has the property,
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that the size of the input vector is as big as the size of the output vector. Since
the output window will have unbounded support, we need a long (ideally infi-
nite) output vector and hence a long input vector by appending zeros on both
sides of the input vector.

Applications of redressed Gabor-Expansion

These warped Gabor frames bear many similarities with Wavelets, hence they
share many of their advantages. Later (figure 4.2) we will see that warped Gabor
atoms and wavelets also have great similarities in their visual shape.

• The atoms frequency bands can be adapted to the scale of the signal, e.g.
twelve tone scale, pentatonic scale, etc. figure 3.8 shows two spectrograms,
one adjusted to the scale of the signal and uniform one.

• The attack of a sound is usually much shorter than somebody can play
distinct notes. The note duration is in the range of several milliseconds,
while virtuoso passages are seldom faster than 800 attacks per minute,
respective at a spacing of 75 ms. Hence one can choose a finer time reso-
lution at attacks, resolving it well in time and finer frequency resolution
afterwards, making it possible to precisely track glissandi or vibrati.

• The bands can be adapted to partials of the signal. E.g. the piano has
non-harmonic partials in the lower register. Also bells and drums have
non-harmonic partials. The FFT with its equal spaced frequency bands
is not well suited for the analysis of non-harmonic partials.

• From my experience while writing this thesis, this analysis-synthesis algo-
rithm can be used to achieve interesting sound effects and to synthesise
new sounds. I tried the following: Using different atoms for analysis and
synthesis; reorder the atoms before synthesis; do various calculations with
the coefficients; skip certain coefficients.

• Generation of non uniform spectrograms.

• Warped Gabor frames are easier to compute than wavelets.

32



Figure 3.8: Four times the the beginning of Tom’s Diner by Susanne Vega.
The singing phrase is represented in the score line below. Plot a) shows it

analysed with uniform frequency bands. Plot b) is a nonuniform 12-tone scale
spectrogram showing clearly the melody. Plot c) uses the same nonuniform
12-tone scale but with not redressed atoms. Plot d) is the same as b) but
analysed using my algorithm while it was in an early development stage.

The plots b), c) and the score line are taken from [9] with permission from
Prof. G. Evangelista.
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Chapter 4

Realtime Computation of
Warped Gabor Expansion

4.1 Problems due to real time computation

If one does not need real time computation, one can use windows which are
unbounded in time. This has the advantage that we can use windows which
are compactly supported in the frequency domain (band limited). For real
time computation this is obviously not possible. That means, we have to use
windows which are unbounded in the frequency domain. This makes problems
in the redressing of the Gabor frames which are discussed above.

Let WLq denote the length of the window ˜̃ϕn,q. For computing one coefficient
cq from (2.15) we need to measure the signal s for a duration of WLq to compute
the inner product. Therefore an algorithm has at least a delay of WLq. This
delay is different for each band. To reconstruct the signal one clearly has to wait
maxq WLq. The longest window will usually be the one with the lowest center
frequency. The delay of the algorithm hence usually depends on the window
with the lowest frequency band.

In an implementation of the warped Gabor Expansion, one cannot use the
Fast Fourier transform (FFT), because because the center frequencies of the
analysis/synthesis bands are not uniformly spaced. The computational costs are
therefore much higher than they are in STFT (or Wavelet analysis) applications.

4.2 The implementation of the algorithm

I will first present details on how I implemented the algorithm, split up into the
parts Computation of all parameters, Window computing, Analysis and Syn-
thesis. This part will be mostly independent of my concrete implementation,
meaning independent of the programming language, Pure Data, data types and
so on. The part Further details will deal with this.

Computation of all parameters

For my implementation I made the following assumptions:
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• The warping map θ is odd, i.e. θ(−f) = −θ(f), bijective on R, strictly
monotone increasing and differentiable.

• The window function h is the raised cosine window given by

h(t) =

{√
2b
R cos πt

WLh
if −WLh

2 < t < WLh
2

0 otherwise
(4.1)

where WLh is the window length, b is the frequency sampling parameter,
R is an integer and we set the time sampling parameter

a = WLh/R (4.2)

Note that this function is real valued and dual to itself since h2 is the
Hanning window.

• The input signal is real valued.

To compute the time-frequency sampling parameters, I followed the ansatz
in [7]. R is chosen after the essential bandwidth BW in which one wants to
linearise the phase. In figure 4.1 one can see the magnitude of the Fourier
transformed cosine window. The main lobe has bandwidth 3/WLh. Linearising
inside this bandwidth leads to R ≥ 3 using (4.2) and (3.7). Setting WLh = R

2f0
makes sense in the case of a tempered scale warping map in order to have
sufficient frequency resolution. If f0 is the frequency of the smallest tone to be
represented, then adjacent tones fall away from the main frequency lobe of the
window. This gives

a =
WLh
R

(4.3)

Since the warped windows have infinite support in general, I compute the
windows using window length WLc (c for compute), which I defined as

WLc =
WLh
θ′inf

Cwl

where Cwl ≥ 1 can be chosen inside the PD-patch and θ′inf = inff∈R θ
′(f). If

θ′inf = 0, I set WLc = 5C WLh. Cwl ≈ 3 gives good results. Since ab ≤ 1/R in
order to obtain a frame, I define

b =
1

aRCb

where Cb ≥ 1 can be chosen inside the PD-patch. In my tests Cb = 2 provided
good results.

For further calculations I defined

Bq = θ(qb+
BW

2
)− θ(qb− BW

2
)

which will be called essential bandwidth of the qth window. The parameters dq
must obey dq ≤ 1/Bq. Hence I defined them as

dq =
1

BqCd
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where Cd ≥ 1 can be chosen inside the PD-patch. Cd ≈ 2, 5 yielded good
results. Too small and too big numbers both gave worst results. Remark that
the numbers dq have to be chosen such that dq/SR ∈ N, where SR is the sampling
rate, because in the applications we have to deal with a sampled version of the
signal s. Since this will not be the case in general, one has to choose smaller
numbers.

Finally the number of bands qsup we need for a given SR is

qsup = floor(θ−1(SR/2)/b) + Cq,

The extra term Cq is due to the widening of the bands after warping. Empir-
ical tests showed that it is enough to compute bands up to a center frequency
of about 34 kHz. Clearly, this depends on the specific parameters used, espe-
cially the warping map and the overlap in the frequency domain and should be
adjusted after a change of parameters.

Actually, all window functions which are real valued and dual to itself can be
used. In that case only the computation of the parameters changes. Particularly,
the window functions need not to be symmetric.

Figure 4.1: Magnitude Fourier transform of the cosine window. The image is
taken from [7].

Window Computing

Using some simplifications and observations one can reduce the computational
load considerably. Since for the painless case the windows ˜̃ϕn,q are time shift
invariant under a shift of dq (see equation (3.5))

˜̃ϕn,q(t) = ˜̃ϕ0,q(t− ndq)

it suffices to compute the window ˜̃ϕ0,q = F−1
√
dq/aĥ(θ−1(f) − qb) and shift it

in time. In the following I will omit the time index n in ˜̃ϕn,q. In the general case
the delay is not linear outside the band of interest. For real time computation
we need to precompute the windows, hence we have to make the approximation
that the windows still are time shift invariant for the general case. In the not
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redressed setting, the windows are totally not time-shift invariant, precluding
the precomputation due to memory restrictions. In my applications all windows
taken together needed about 30 MB. However, if one uses a weakly rising warping
function and big overlap in frequency the required space easily takes several GB
leading to problems for 32-bit architecture PCs.

Using an odd function for the warping map, one only needs to compute half
of the windows since then d−q = dq and

ˆ̃̃ϕ−q(−f) =

√
d−q
a ĥ(θ−1(−f) + qb) =

√
dq
a ĥ(−(θ−1(f)− qb))

=

√
dq
a ĥ(θ−1(f)− qb) because h is real valued

= ˆ̃̃ϕq(f)

Applying the inverse Fourier transform we get

˜̃ϕ−q(t) = ˜̃ϕq(t)

and finally since our signal is real valued (s = s̄)

c−q = 〈s, ˜̃ϕ−q〉 = 〈s, ˜̃ϕq〉 =

∫ ∞
−∞

s(t) ˜̃ϕq(t) dt =

∫ ∞
−∞

s(t) ˜̃ϕq(t) dt = 〈s, ˜̃ϕq〉 = cq.

In my implementation I used the raised cosine window as the window func-
tion h. Since its Fourier transform has a closed expression in mathematical
terms

ĥ(f) =

√
b

2R

(
sinc

(
WLh − 1

2

)
+ sinc

(
WLh + 1

2

))
(4.4)

I can use this formula directly in the computation afterwards.

Windows to be computed

Tests (not included in here) indicated that a precomputation of the windows
with a higher sampling rate yields better results up to factor of CSR = 4.
Using double precision and long double precision numbers (using gcc 4.8.1 under
MinGW, ε = 10−19) does not seem to make a difference, other than using single
precision which results in an analysis-synthesis error 7 dB higher (for white
noise).

Pseudo Code

I present the pseudo code to calculate the windows. To compute the inverse
FFT I used the fftw-library. This library expects the frequency 0 at bin 0.

SR=44100;

N_out=WL_c*SR;

N=N_out/C_SR; //I assume this is an integer.

win_c=array of size q_sup*N;

win=array of size q_sup*N_out; //array for the warped window.

deltaF=1/WL_c; //step size of FFT.
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I2F(i):=i*deltaF; //index to Frequency.

for(q=0 to q_sup-1){
for(i=0 to N/2){ //positive frequencies.

win_c[q][i]= h_hat(theta_inv(I2F(i))-q*b)*sqrt(d_q/a);

}
for(i=iN/2+1 to i<N-1){ //negative frequencies.

win_c[q][i]=h_hat(theta_inv(I2F(i-iN))-q*b)*sqrt(d_q/a);

}
i0=SR/(2.0*deltaF); //Set all frequencies higher

for(i=i0 to N-i0){ //than SR/2 to zero.

win_c[q][i]=0;

}
pac=fft_inverse(pac); //Compute inverse FFT

for(int i=0 to N-1){ //Normalisation due to the FFT

win_c[q][i]=win_c[i]*deltaF;

}
//Dependent on the used fft-implementation other orderings of

//the frequencies and normalisations in win_c[q] may be needed

for(i=0 to N_out-1){ //down sampling.

win[q][i]=win_c[i*C_SR];

}
}

Functions used in the algorithm

h hat is the Fourier transformed of h from equation (4.1) and is given in equa-
tion (4.4). theta inv is the inverse of the frequency warping map θ.

Pictures of precomputed windows

In figure 4.2 some windows can be seen. The parameters for these windows are:
• R = 3
• WL = 0,125 s
• WLc = 0,5625 s
• a = 0,041667 s, b = 4 Hz
• C SR=1
• Oversampling: 2
• h: raised cosine window

• θ(ν) =

{
2f0ν
d if |ν| ≤ 2d

σ(ν)f02
|ν|
d otherwise

with d = 36, f0 = 12 and σ(ν) denotes the sign of ν
The first few windows look like usual TF-shifted Gabor frames, since the

warping map θ is linear for small frequencies. When the warping map grows
exponential the windows look like Wavelets. They grow in amplitude while their
support shrinks.
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Figure 4.2: Some windows ˜̃ϕq.

Window Cutting

Due to the warping, the supports of the windows are in general unbounded even
if they were bounded before. It is therefore indispensable to cut the windows
after warping. In my algorithm I implemented two different ways to cut the
windows.

• For the first approach I use the fact that scaling a function in time by
the factor a leads to a Fourier-transformed which is scaled by the inverse,

f(ax)
F7−→ 1/af̂(ω/a). If one linearises θ′ around the point θ(qb) as done

in [7, equation (37)], the warped windows become

˜̃ϕq(t) = θ′(qb)h(θ′(qb)t) e2πiθ(qb)t (4.5)

If WLh denotes the length of the original window h we get:

WLq =
WLh
θ′(qb)

This calculations also show that one may need a larger window length for
computing warped windows, because they could get stretched in time if
θ′ < 1.

• Since the Fourier transform decays to zero for functions in L2 it makes
sense to set the windows at the beginning and the end equal to zero until
the point where the amplitude is higher than a given number.
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Both techniques led to very similar cutting conditions. Since it turned out that
the second approach does not work well with windows whose center-frequency
is higher than the Nyquist frequency, I only used the first technique to cut the
windows. It is important that the windows are cut with respect to the numbers
dq. Otherwise they would be wrongly aligned in time.

Pseudo Code

for(q=0 to q_sup-1){

WL_new=WL_c/d_theta(q*b)*C_WL; //compute new window length.

if(WL_new>WL_max) WL_new=WL_max; //compare with maximum length.

t0=(WL_c-WL_new)/2; //difference to current length in s.

N0=t0*PD_SAMPLING_RATE; //sample to begin with.

N1=N-N0; //last sample.

if((N-N1) % d_q != 0) N1=N- d_q + (N-N1) % d_q;

//round down to multiple of d_q.

N_new=N1-N0; //new length in samples.

if( N_new >= N) { //if length is longer do nothing.

N_new=N; //Nichts tun

} else {

win[q]=array of size N_new; //array for the new window..

memmove(from: &win[q][N0], to: win[q][0], N_new many values);

//move window inside array

//new window length = N_new.

}

}

d theta is the first derivative of the frequency warping map θ. C WL is factor
greater equal one which can be chosen inside the PD patch. WL max is the
maximum window length in seconds, selectable inside the PD patch.

Analysis

The analysis part poses two difficulties. First we have to buffer the input signal.
Let input be the input signal passed to the algorithm in blocks with block
size BS. Second we have to shift the windows ˜̃ϕq in time respective to dq. For
this purpose I introduced a counter variable counter which counts all samples
through. If counter mod dq = 0 then a coefficient cq must be computed. Since
modulo is a costly operation this part of the program could be optimized further.

Let snd be the array for the sound buffer. snd A the pointer to the begin
of the sound buffer (sound stArt), snd E the pointer to one after the end of the
sound buffer (sound End), snd C the current pointer the sound buffer where we
have to copy new parts to (sound Current). The sound buffer is longer than the
longest window win q and a multiple of the block size BS in which we process
the signal. win A the pointer to the begin of win[q] and win R a pointer to
win[q] (window Read), WL q the length of the array win[q]. c be a struct
which contains all the important information needed to reconstruct the signal.
The struct contains the starting time c.start, the band number c.band and
the value of 〈s, ˜̃ϕn,q〉 c.val.
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Pseudo Code

I will use the macro READ in the listing below

READ:= sum_r+= (*snd_R) * real(*win_R); //compute inner product.

sum_i-= (*snd_R) * imag(*win_R);

--snd_R; --win_R; //regress the pointers.

Now the listing of the Analysis part

//Copy input signal into buffer

snd_C=snd_C+BS; //advance the pointer by BS

if(snd_C==snd_E){ //if we are at the end of the sound buffer

snd_C=snd_A; //we go back to the beginning.

}
copy(from: *(input[0]), to: snd_C, BS many values);

//Compute the coefficients

for(i=0 to BS){
++counter; //Increase the counter by one.

for(q = 0 to q_sup-1){
if(counter%d_q==0){

snd_R=snd_C+i; //where to start reading.

snd_RA=snd_R+1-WL_q; //where to end reading,

//I am processing backwards here.

win_A=*(win[q][0]); //Pointer to the beginning of win[q].

win_R=win_A+WL_q-1; //where to start reading.

sum_r=0; //real part of the coefficient.

sum_i=0; //imaginary part of the coefficient.

if(snd_RA>=snd_A){ //win[q] fits in the sound buffer,

//see figure 4.3 for details.

while(win_R>=win_A){ READ }
} else { //win[q] protrudes the sound buffer.

while(snd_R>=snd_A){ READ }
snd_R=snd_E-1;

while(win_R>=win_A){ READ }
}
val_r=sum_r/SR; //The inner product is an integral, hence

val_i=sum_i/SR; //we have to multiply with the step width.

c.start=i;

c.val=sum_r+I*sum_i; //I is the imaginary unit.

c.band=q;

}
}

}

Synthesis

The synthesis part is slightly more complicated in aligning everything right since
we have to shift everything forward in time with respect to the starting time
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Figure 4.3: The two possible alignments of the win[q] array relative to the
snd buffer. The thick framed, four cells long parts depict the blocks in which

we process the signal. If the window win[q] protrudes the sound buffer, we
have to shift the projecting parts to the end of the sound buffer.
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Figure 4.4: Drawn are two windows 1 and 2. Window 1 ends in the first block
with starting time i1=3, the second ends in the second block with starting
time i2=1. From the begin of the block we have to shift each window for

iq + WLmax −WLq, resulting in a time delay of WLmax in total.

c.time and with respect to the longest window win q. From figure 4.4 it is easy
to see how to shift the windows.

Let snd be the sound buffer for the output. snd A is pointer to the beginning
of the buffer, snd W a pointer to the place where we want to write, snd WA the
pointer to the place where we want to start writing to. snd WE the pointer
one after the place where we want to stop writing, snd E the pointer to one
after the last element of snd. snd L will be the length of the sound buffer, this
number is a multiple of the block size BS and longer than the longest window
win[q]. The length of the longest window is WL max. win A is a pointer to the
begin of win[q], win E a pointer to one after the last entry, win R a pointer
where we want to read values from, win L the length of the window win[q] The
output will be written to out. c=c[0]..c[num coeff-1] will be an array of
the above mentioned structs, containing all computed coefficients of the current
signal block.

Pseudo Code

I will use the macro WRITE in the listing below

WRITE:= *snd_W=*snd_W + real(c[k].val) * real(*win_R)

- imag(c[k].val) * imag(*win_R); //I only need to

++snd_W;++win_R; //compute the real part.

Now the listing of the Synthesis part

k=num_coeff;

while(k){
--k;

q=c[k].band;
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if(q=0) c[k].val=c[k].val*0.5; // I only computed half of the

// coefficients since all coefficients but the zero-th

// occur two times in the sum.

snd_WA=snd_C+WL_max+c[k]-WL; //see figure 4.4 for details

snd_WE=snd_WA+WL;

win_R=win_A;

//see figure 4.5 for details.

if(snd_WE<=snd_E){ //first case in figure 4.5.

snd_W=snd_WA;

while(win_R<win_E) { WRITE }
} else if (snd_WA>=snd_E) { //second case in figure 4.5.

snd_W=snd_WA-snd_L;

while(win_R<win_R) { WRITE }
} else { //third case in figure 4.5.

snd_W=snd_WA;

while(snd_W<snd_E) { WRITE }
snd_W=snd_A;

while(win_R<win_E) { WRITE }
}

}
//copy buffer to output

for(i=0 to BS) {
output[i]=2*snd_C[i; //times two, see above.

snd_C[i]=0; //set sound buffer to zero here.

}
snd_C=snd_C+BS; //advance snd_C

if(snd_C==snd_E) snd_C=snd_A; //if we are at the end, go back.

Optimisations

Multi-threading

It is very easy to compute the analysis part in several threads, since we do not
need to write data and therefore will not have race conditions. The synthesis
part needs some considerations about how to parallelise it.

Analysis Every thread gets a part of the bands coefficient to compute. In
my case, if I have four threads and 20 bands, then thread one computes the
coefficients for band 0 to 4, thread two computes the coefficients for band 5 to
9, and so on. A more intelligent partitioning, but not implemented yet, would
be: Thread one computes the coefficients for band 0,4,8,12,16. Thread two
handles band 1,5,9,13,17, and so on.

Synthesis For the synthesis part I tried two approaches how to parallelise it.

• Thread one computes all the values snd[k] in the sound buffer with k mod
4 = 1, thread two computes the values with k mod 4 = 2, et cetera.

• Thread one processes all coefficients from band q = 0..qsup/4 − 1, thread
two processes all coefficients from band q = qsup/4..2qsup/4− 1, et cetera.
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Figure 4.5: The three possible alignments of the win[q] array relative to the
snd[] buffer. The thick framed, four cells long parts depict the blocks in which
we process the signal. If the window win[q] stocked out of the sound buffer, we
have to shift the projecting parts to the end of the sound buffer. If the window

was completely outside, we would have to move everything. The three cases
refer to the pseudo code of the synthesis algorithm.

But each process writes its output into its own sound buffer. When all
threads finished work, the main thread sums up the sound buffer. This is
not costly, since the main thread only needs to treat the next block size
many cells, resulting in an overhead of Number of threads additions per
sample, which is negligible.

It turns out, that the first approach carries too much overhead (at least in my
implementation) and is slower than the single threaded version. Hence I am
using the second one.

SIMD

If one uses single precision numbers (and a new x86 processors) the use of SIMD
SSE2 instruction is possible. SSE2 only processes single precision values. This is
not a problem since the analysis-synthesis error is the same using single precision
and double precision number within the precision of measurement. For double
precision vector extensions AVX instructions can be used, but these are not
standardized yet. SSE2 instructions take an array of four floating point values
which must be 16 bytes aligned. The aligning of the sound buffer is no problem,
as long as the block size is a multiple of 16. In my case, I hard coded a block
size of 64, which is the standard block size of Pure Data. The aligning of the
windows to compute the inner products poses problems.

One solution would be to round the numbers dq down to a multiple of 4
and let all windows be a multiple of four long. Floating point numbers are 4
bytes long, leading to the result that all windows start at an 16-byte aligned
memory location and at one. This increases the computational load slightly
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(since all windows are longer and the values dq are smaller, on the other side
the analysis-synthesis error decreases), but is not possible for windows which
have a sampling value dq smaller than 4. This sometimes affects bands with a
center frequency from 10 kHz, but usually from 20 kHz onwards. The needed
memory stays the same.

Another solution is to make four copies of the windows. The first copy starts
0-bytes-aligned, the second 4-bytes-aligned, etc. Then, for all window functions
and for all sample times there is a window function which is 16-bytes aligned.
This requires extra computations in order to know which window must be used.
These are Number of bands×4 reading operations per sample (Actually, we
must compute the address modulo 4 resulting in 4 modulo operations, but this
reduces to the problem of reading the two lowest bits of the address, due to the
binary system). However, because the end of the window will not be 16 byte
aligned, one has to add zeros at the end and at the beginning in order to have
four floating point values to multiply with the signal. Figure 4.6 explains this
graphically. My implementation uses the second approach.

Figure 4.6: The pointer snd R determines the end of the window. The four
windows win[0] to win[3] are all copies of the same window but aligned

differently. win[i] starts with an i-byte offset. win[2] with length 5 has the
same alignment as the sound buffer snd. The trailing zeros allow it, to

compute the inner product of the shaded cells which can be executed with SSE
instructions.

GPU

The algorithm should be perfectly suitable for computation using a GPU. The
windows can get precomputed from the CPU with high precision. The windows
then are stored in the GPUs memory. Later on, the only data to be transported
to and from the graphic card is the sound data.

Fixed Point Arithmetic

Using fixed point numbers should result in a faster algorithm but accumulated
numerical errors can lead to large overall inaccuracy.
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Further Implementation Details

The program is written for a plug-in (External) for Pure Data mainly written by
Miller Puckette. It is written in C, version C11, due to the use of the complex
data type (C99) and the use of threads (C11). It is compiled using MinGW
4.3.11 under Win7 64 bit. The external is compiled for 32 bit. The code should
be easily portable, except for the part with threading, which uses Windows
API’s. The use of SSE instruction poses no problems since one can use wrapped
intrinsic functions provided by Intel. Porting to 64 bit will be problematic in
the current version, since I use ugly pointer to int to float conversions. I assume
that single precision floats and pointers are 32 bit wide both.

The externals are split up into two major parts. These are the analysis ob-
ject, called wabor˜ (Warped Gabor), and the synthesis object called invwabor˜
(Inverse Warped Gabor). The objects are connected via two signal connections.
Since the data rate of the analysis part is not uniform in time, the signal con-
nection is actually not suitable to transfer the coefficients. Therfore, I use the
signal connection to transfer pointers to the actual data. The leftmost con-
nection holds the pointers to the coefficients data (called Gabor Data in the
following), the second holds the pointers to the windows (called Control Data
in the following.

Gabor Data

One audio block B contains the following (and therefore the block size must be
at least 20):
B[0]=0x57414247: This is just a magic number, “WABG” in ASCII code.
B[20]: A pointer to an array of pointers to an array of structs containg the

Gabor Coefficients.
The pointer points to an array c of size equal to the number of threads used in
the analysis part. The number of threads, and therefore the size of the array
is stored in the field tc[WABOR T LENGTH BIN]. WABOR T LENGTH BIN is a macro
defined in the header file wabor t definitions.h and is currently -5. Note that
this is a negative index. The structs c[i][j] with i=0..number of threads have
the following format:
int c[i][0].numCoeff: The number of coefficients stored in c[i]. That means

the index variable j=0 to numCoeff-1. This field is unused in all other
structs contained in c[i].

int c[i][j].start: The starting time of the window, same as in the listing
above

float/double c[i][j].val r: The real part of the coefficient. Both data
types are possible, selectable at compile time.

float/double c[i][j].val i: The imaginary part of the coefficient. The data
type is determined at compilation time. Differently than in the listing
above I stored the real and imaginary part of the windows in two distinct
arrays.

int c[i][j].band: The band number q.

Control Data

One block C contains the following data:
B[0]=0x57414243: This is just a magic number, “WABC” in ASCII code.
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B[4]: Contains the length of the longest window WLmax in samples as an in-
teger.

B[8]: Contains the number of bands qsup as an int.
B[12]: Pointer paf r to an array of pointers to an array containing the real

part of the warped windows.
B[16]: Pointer paf i to an array of pointers to an array containing the imagi-

nary part of the warped windows.
The data for the windows is organized as follows. The pointer paf r (and

respective the pointer paf i) points to an array of size q sup. paf r[q] with q
between 0 and qsup−1, contains the warped window. The length of the window
WLq is stored in paf r[q][WABOR T LENGTH BIN], the window data is stored
in paf r[q][0].. paf r[q][WL-1]. Before and after the window data there
are four trailing zeros. The number WLmax is used in the synthesis part for
allocating a big enough sound buffer.

If the synthesis part does not find the Magic Numbers in both the Gabor
Data Block and the Control Data Block, then it does nothing. Thus, wrong
wirings in the PD patch should not cause a breakdown of the PC.

4.3 Computational Costs

Analysis

A rough estimation yields the following. Let WLq denote the length of the
qth-window in samples. To compute the inner product of that window with
the signal one needs 2WLq many real multiplications and summations. This
has to be done every dq samples. Hence, per sample we have 4WLq/dq many
operations in average. WLq is proportional to WL0/θ

′(qb), dq is proportional to
1/θ′(qb). Summing up over all windows we get the average number of operations
per sample N :

N =
∑
q

4WLq
dq

∼
∑
q

4WL0

θ′(qb)

θ′(qb)

1
= 4qsupWL0

qsup denotes the number of bands which depends on θ−1.
If we linearise θ around qb, θ(qb + Kb

2 ) ' θ(qb) + θ′(qb)Kb2 , we get the
estimation for the dq’s.

Bq = θ(qb+
Kb

2
)− θ(qb− Kb

2
) ' θ′(qb)Kb

⇒ dq =
1

Bq
' 1

θ′(qb)Kb
(4.6)

Summing everything up, the complexity of the analysis part is proportional to
WL0, K, b and qsup ∼ θ−1(SR).

This is an estimation of the average computational cost. In the worst case
all inner products of the windows with the signal have to be computed starting
at one frame. The number of operation for that frame is∑

q

4WLq ' 4
∑
q

WL0

θ′(qb)
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In our case θ(f) ' f02f/d, where f0, d ∈ R are constants with d > b this
yields:

qsup−1∑
q=0

4
WL0

θ′(qb)
' 4dWL0

f0 log 2

qsup−1∑
q=0

2−qb/d

= C1
dWL0

f0

2−bqsup/d − 1

2−b/d − 1

' C1
dWL0

f0

1

1− 2−b/d

However, if one processes the audio stream block wise, the worst case cannot
arise for all samples in the block at once. Because there cannot be two worst
case scenario frames in brief succession (they have a distance of maxq dq), the
next m frames have for sure lesser computational cost (zero if all dq > m).
Therefore the average costs are a suitable measure for the analysis process.

Synthesis Part

The complexity of the Synthesis part is the same as that of the analysis part.
Furthermore, in the synthesis part the worst case scenario can be avoided, be-
cause only the parts of the next frame buffer have to be computed in real-time,
the rest can be computed later. Nevertheless, my algorithm is not optimized in
this direction.

Memory Costs

My algorithm for precomputing the windows needs 2KqWL0 cells, where K
is the oversampling factor used while computing the windows. With slight
modifications it should only need K(WL0 +

∑
q WLq). The smallest possible

number of cells being needed is
∑
q WLq. The analysis and synthesis algorithm

both need at least a buffer of size Audiobuffer-Size + WLmax, where WLmax
denotes the window length of the longest windows used in the analysis and
synthesis, and audio buffer-size the bufferlength in which the audio is processed.

4.4 Computational Error

A mathematical estimation of the error would go far beyond this master thesis
work. Therefore, I only undertook measurements of the relative error. The
error numbers err are the difference between the level of the output signal in
dB and the level of the input signal in dB (i.e. negative signal to noise ratio).
My implementation of the algorithm for real time computation yields values of
err '-50 dB.1

Overlap in Time

The first measurements regards the influence of the windows overlap in time.
Overlap 3 means, that the basic window would overlap by one third of it’s

1For comparison: 16 bit quantization (which is CD-quality) has err '-96 dB, 8 bit quanti-
zation has err '-50 dB
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length.2 I first performed measurements with white noise to see if this param-
eter has an influence at all, and if so, in which range the parameter shall be
chosen. The results can be seen in figure 4.7. It turned out, the overlap has
no big influence on the error. Overlap less than 1,5 yields to undersampling,
i.e. the windows do not constitute a frame any more and are of no interest.
Overlap factors from 3 to 15 nearly yield an error of about -30 dB. With even
higher overlap noise with high frequencies emerges, probably due to numerical
instabilities in the algorithm. When using double precision numbers for the
synthesis sound buffer the high noise still emerges. If the input signal has no
high frequencies, one can low-pass filter the output after the synthesis. In the
table in figure 4.7 the values in the column err after Filtering denote the err
after low-pass filtering with a roll of frequency adapted to the emerging high
noise. A test with an input signal with frequencies up to 10 kHz and an overlap
factor of 30 gave an error of -63 dB.

As a result of this preliminary test, further tests with different kinds of
signals were made with overlap values 3,6, 12 and 18. The number err20k in the
tables denotes the error after low pass filtering the output with a biquad filter
with roll of frequency 20 kHz. The following signals were used for testing
• white: White noise.
• pink: Pink noise.
• brown: Brownian noise.
• sine440: A pure 440 Hz sine tone.
• sine20k: A pure 20 kHz sine tone.
• square440: A square wave with 440 Hz.
• square20k: A square wave with 20 kHz.
• tri harm: A sum of triangular waves with frequencies 440 Hz, 880 Hz,

1320 Hz, 1760 Hz and 2200 Hz (the first five harmonics)
• const: A constant signal.
• clicks: Clicks with a spacing of 1 s.
• china: The piece (dù sh́ı niáng). A chinese folk song featuring

sharp attacks of cymbals, drums and voice, total length 9 s.
• toms: The a capella beginning of Susan Vegas song Toms Diner, total

length 9 s.
• led: The beginning of Led Zeppelin’s Kashmir featuring distorted guitars,

total length 17 s.
• beet: The beginning of Piano Sonata op 31.2 by Beethoven featuring me,

total length 42 s.
• chopin: The beginning of Chopin’s Ballade No. 4. featuring sustained

piano chords, total length 30 s.
• freq: A long test file consisting of 24 pure sinusoids (each long 2 s) with

following frequencies: 200, 300, 400, 500, 600, 700, 800, 900, 1k, 2k, 3k,
4k, 5k, 6k, 7k, 8k, 9k, 10k, 12k, 14k, 16k, 18k, 20k and 22k Hz. Total
length: 23 s.

• test: A long test file consisting of different sections. It begins with three
types noise (each 2 s), followed by 4 sinusoids with overtones (harmonic
and nonharmonic) (each 2 s), followed by one linear sweep and one loga-
rithmic sweep (each 3 s), followed by DTMF tones in different lengths (in

2Due to the warping, the warped windows overlap by slightly different values for each band
dependent on the overlap of the basic window and the values dq which depend on the warping
map.
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Overlap err Overlap err
err after
Filtering

0,003 -0,0 6 -30,2
0,03 -0,3 7,5 -29,9
0,3 -2,5 9 -29,5

1 -8,2 12 -29,3
1,5 -14,4 15 -26,9 -48,0

2 -22,6 18 -20,0 -52,9
3 -28,2 24 -12,4 -40,4
4 -29,4 30 -8,8 -41,1

4,5 -29,6

.

Figure 4.7: Error subject to the overlap of the windows in the time domain.
The red values (Overlap ≤ 1,5) denote Gabor systems which do not constitute

a frame. The columns (made with the program Cool Edit show the
spectrograms of the difference between the analysed-synthesised and the

original signal which is white noise. The intensity is from white (less) over
pink to red (very much). Values in dB.
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Figure 4.8: Error subject to parameter overlap. Values above -30 dB and
below below -50 dB are shaded. The table on the left states all parameters

used for the measurements. Values in dB.

total 6,5 s) and modulated sinusoids (2 s). The end is white noise faded in
and out. Total length: 34 s.

• wa: A long test file with a frequency modulated sinusoid with unequal
spaced overtones starting at 400 Hz and dropping slowly down to 200 Hz.
The modulation frequency at the beginning is 0,5 Hz with a frequency hub
of 200 Hz and at the end 5 Hz with a frequency hub of 20 Hz. Total length:
29 s.

All test files and noise were created with the program Cool edit v2.1. For the
test files no err number determined, but a spectrogram was made (Gaussian
window, 4096 bands).

Since the err values of overlap 12 and 18 were nearly same, no spectro-
gram for overlap 18 was made. The measuring results are in figure 4.8, the
spectrograms are in the appendix on page 60.

Overlap in Frequency

It turned out that a higher overlap of the windows in the frequency domain with
constant overlap in the time domain (constant parameter a) has no influence
on the error (within the error of measurement). Hence I did no further testing
using the test files. The results can be seen in figure 4.9.

Window Cutting

The next question regards the influence of the window cutting onto the out-
put. First measurements with noise showed an inverse proportional correlation
(inside the interval of interest) between the number

∑
q WLq/N (N denotes the

number of windows) and the error, 4000 ·N samples correlate to 5 dB.
Tests with warped windows with the linearised warping map showed that the

err is in the same magnitude as long as the window length is shorter than the
window length of the linearised warped window. Clearly the error does not get
smaller if one chooses a bigger window length with linearised warped windows.
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Figure 4.9: Error subject to the parameter b, parameter a = 0, 4166 s constant,
values in dB. Input signal: white noise.

err
∑
q WLq/N err

∑
q WLq/N

-31,6 16538 -27,2 7609
-31,1 12644 -26,4 7070
-30,3 11375 -25,6 6309
-30,4 10623 -25,1 5788
-29,9 9326 -22,9 5032
-28,9 8907 -21,6 4185
-28,8 8368 -19,2 2376

Figure 4.10: Error subject to
∑
q WLq/N.
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Figure 4.11: Error subject to the window length. Values in dB.

This shows that the exactly calculated windows with cutting afterwards yields
better results than the linearised warped windows.

Due to the big influence of the window length on the error I conducted tests
with the test files. The results are shown in figure 4.11, the spectrograms can
be seen in the appendix on page 66. These test results too show an inverse
proportional correlation between

∑
q WLq/N and err of about 4000 ·N samples :

5 dB, however, the error does not get smaller than roughly -60 dB.

Window length for computing

Since the windows get unbounded due to the warping, it is indispensable to
calculate the windows with a much longer window than the one of the basic
window. This is the topic of the following test. Evangelista used for his tests
a window length of about 2,6 s. My tests showed now significant improvement
between windows with length 0,75 s and 3 s. The test results are shown in
figure 4.12, the spectrograms are in the appendix on page 63.

Floating Point Precision

There was no difference in the error when used double and float values for the
computation of the Gabor coefficients as well as for the synthesis sound buffer.

Error for unwarped windows

For unwarped windows I got perfect reconstruction. The measurement results
are in figure 4.13, the spectrograms are in the appendix on page 69.
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Figure 4.12: Error subject to the window length used for computing the
windows. Values in dB.

Figure 4.13: Error for unwarped windows. Values in dB.
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Chapter 5

Recapitulation

Warped Gabor frames have the following properties

• Easy to adapt to properties of the signals.

• Easy to compute.

• Have infinite time support in general, hence cannot be used for real time
computation in the first place without approximations.

• The algorithm in the following condition yields a relative analysis-synthesis
error of about -50 dB for typical sound signals and a window length of 0,4 s.

Subjects for further research from very important to negligible.

• The precomputed windows still have numerical errors near t = 0. Probably
due to this, the err numbers are always higher than -60 dB.

• Exact estimation of the error.

• Windows with infinite length could be implemented. Since the windows
have infinite support after warping anyway, one is not restricted to use
windows with compact time support.

• The external uses a hard coded block size of 64 and a sample rate of
44100 Hz. These values can be changed easily before compilation inside
the source code. Change of these values inside PD will crash the external.

• The Bark scale should be implemented as a warping map.

• Further externals should be programmed which

– add wabor frames together, multiply wabor frames, . . . .
– filter all small coefficients out of the wabor frame.
– generate wabor frames.

• The algorithm requires an analytic version of the Fourier transformed
window function. This is an unnecessary restriction.

• The precomputation of the warped windows should get optimised. A lot
of operations are performed multiple times, also the memory management
is not efficient.
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• Tests about the minimum error while still computing in real time should
be made. My PC is too old to get meaningful results for that (and suffered
some heat strokes while measuring).

• The distribution of the computational load should be better split up be-
tween the several threads.

• The external needs a lot of memory for storing meta data which is actually
not needed for the analysis-synthesis part.

• The multi-threaded version uses hard coded four threads.

• SIMD instructions are not implemented in the synthesis part yet.
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Chapter 6

Appendix

6.1 Spectrograms

Spectrograms in the following order:

• Spectrograms of the analysed-synthesised-signal freq, test and wa with
varying overlap of the windows in the time domain.

• Spectrograms of the analysed-synthesised-signal freq, test and wa with
varying lengths of the windows used for the precomputation of the win-
dows.

• Spectrograms of the analysed-synthesised-signal freq, test and wa with
varying lengths of the windows used in the analysis and synthesis part.

• Spectrograms of the original signal freq, test and wa and of the dif-
ference between the analysed-synthesised signal and the original signal.
The windows used here are not warped, hence are classic STFT windows.
Since the error is very small, the spectrograms of the difference signal is
amplified by 48 dB, respective 96 dB.

All spectrograms are made with the program Cool Edit v2.1 using a STFT with
Gauss window and 4096 bands.
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6.2 The pd-external

Installation Guide for Windows

The file wabor t.dll must be copied somewhere and the path to it must be passed
to PD. For example, the file wabor t.dll resides in C:\plugins than PD needs to
be started with the command line argument -lib C:\plugins\wabor t. The
files wabor˜.pd, invwabor˜.pd, welay˜.pd just need to be at a place where PD
can find it. If PD says it cannot load the external, than probably the file
libfftw3l-3.dll is missing in the folder pd\bin\.

Source Code

I can send the source code on request by mail. My address is tommsch@gmx.at.
The code is published under the GNU General Public License as published
by the Free Software Foundation; either version 2 of the License, or any later
version. This program is distributed in the hope that it will be useful, but
without any warranty; without even the implied warranty of merchantability or
fitness for a particular purpose. See the GNU General Public License for more
details.

Interface

The file wabor.dll contains the following externals:

• wabor tilde: The analysis part.

• invwabor tilde: The synthesis part.

• welay tilde: A quick and dirty delay line for arbitrary long delays. The
delay is given in whole samples.

All objects come along with a wrapper patch, these are

• wabor˜

• invwabor˜

• welay˜

which provide the control logic for the externals. Especially for the wabor tilde
external it is strongly recommended to use the wrapper. All objects do not
receive any creation arguments. They are only for the purpose that the objects
graphical box in PD is bigger. Furthermore the files

• wabor.pd : The patch which was used for the tests in this thesis

• avg.pd: A subpatch used in wabor.pd for computing averages.

• wabout.pd : A small “about” file.

• wabor min example.pd : The minimum example found below.

• libfftw3l-3.dll : The FFTW library for long double precision.

• install.nfo: A short installation guide.
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should come along with wabor.dll.
Figure 6.1 shows the minimum example how to use the objects wabor˜ and

invwabor˜. wabor˜ has one sound input. The second inlet is for turning the
computation of the coefficients on and off. The third and fourth inlet take floats
and determine the band in which the signal gets analysed. This cut-off is quite
exact. The rightmost inlet serves for sending messages direct to the wrapped
external wabor tilde. The leftmost outlet is for the Gabor Coefficients data,
the right outlet for the control data. Both outlets must be connected to the
respective inlets from invwabor˜. The third inlet is for turning the computation
of the coefficients on and off. The rightmost inlet of invwabor˜ is for messages
direct to the wrapped invwabor tilde external. The outlet of invwabor˜ carries
the resynthesised sound. The rightmost outlet sends the delay in samples due
to the analysis/synthesis part as a float. In the example this value is sent to
welay˜ which delays the input from adc˜. Afterwards the delayed original is
subtracted from the analysed-synthesised signal and low-pass filtered with a roll
of frequency of 20 kHz. Hence there should be no output.

Figure 6.1: A minium patch showing the use of the wabor t external.

wabor˜

Most of the subpatch is shown on page 76. It is split up in several parts.

Section 1: This is just the actual external. The output sends data to the array
in section 9.

Section 2: This section is actually an abstraction inside the subpatch with
the name functions and contains commands to manipulate the gener-
ated windows. The general format of the commands is function-name
array-number parameters ... [random]. Function-name selects the func-
tion which shall be applied. All possible command are written below.
Array-number depicts which array shall be manipulated, a value of −1
means that the command is applied to all windows. Parameters are one
or more numbers, depending on the command. Some command take an
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optional random parameter. If so, the outcome is random (like pointwise
multiplied with a random number).

cycle shifts the whole array by an integer. Takes one additional integer
or string and one optional int. The second parameter can be positive
or negative, or of the following format “± N/x”, where x is a number
between 1 and 9. Then the array gets shifted by floor(N/x) bins,
where N is the windows length. Examples are: cycle -1 N/2, cycle
10 -N/4, cycle -1 40.

mult multiplies/divides/. . . the window pointwise with a number. Takes
one additional string, two floats and one optional int. The second
parameter defines what shall be done.
Times val: multiplies everything with the complex number given

via the following two floats. When appending a 1 as a third num-
ber, then everything is multiplied by a random number which has
at most the magnitude of the given number.

Square: Squares everything pointwise.
Times n: multiplies pointwise by the window length (useful after

applying a FFT).
Div n: Divides pointwise through the window length.
Reciprocal: Takes pointwise the reciprocal values.
Conjugate: Conjugates pointwise.
Examples are: mult -1 Times val 19 2.3 0, mult -1 Div n 0 0

cut takes two additional floats. Everything which is in absolute value
smaller than the first value gets scaled up to the length of the first
value. Everything which is bigger than the second value gets scaled
down to the length of the second value. For example: cut -1 0 100,
cut -1 1.2 1.3

fft computes the forward FFT the window. The FFT does no normal-
ization. Applying the FFT four times result in the window being
scaled by N2, where N is the window length.

set nan to zero sets every NaN in the windows to zero. Actually there
should not be any NaN’s.

componentabs maps every value x = a + ib in the window to x 7→
|a|+ i |b|.

ln takes the pointwise logarithm
abs takes the pointwise absolute value
normalize normalizes the window, such that the maximum absolute value

equals 1.
differentiate takes the difference quotient, win(i) := win(i)−win(i−1).

integrate sums the window up, win(i) :=
∑i−1
j=0 win(j). After integrat-

ing the window is set to DC offset zero.
imag plus real maps every value x = a+ ib to x 7→ (a+ b) + i(b− a).
make dc offset makes an DC offset. Takes four additional floats. If the

second parameter is zero, then the current offset is only computed
and printed in the PD main window. If it is one, then the window
gets shifted so that it has a complex offset given by the last two floats.

prolong extends the window by inserting zeros. Takes two additional
ints and one optional int. The second parameter is the number of
zeros which shall be inserted. The third parameter determines the

71



place where the zeros shall be inserted. 0 means at the beginning, 1
in the middle, 2 at the end. If the last parameter is one, then the
number of zeros which are inserted are random, but smaller than the
passed value.

Phase in Degrees: This is no function, just a wrapper for the mult com-
mand. After banging, the window which is visible at the array (sec-
tion 9), gets multiplicated with the complex number eiφ where φ is
given in degrees.

Section 3: make computes the windows. Takes three ints. The first deter-
mining the window which shall be computed, -1 means all windows.
If the third parameter is 1, then a memory saving procedure is used.
In this case if the windows shall be shortened, the second parame-
ter has to be one. If the last parameter is zero, then only the first
parameter has an effect.

shorten shortens the window, can only be used if the non-memory-saving
version was used to generate the windows.

copy pac2paf: The reason for this behaviour is that I compute the win-
dows with a high precision, storing them in the array pac. With
the command copy pac2paf the window gets copied to the array paf

which is the array used for analysing/synthesising. The command
copy paf2pac copies the window data back from the paf array to the
pac array.

With sections 4, 6 and 7 the parameters for window computing are set.

Section 4: With the bangs reasonable parameters can be set at once. Set
WIN COS sets an exponential warping map and a raised cosine window.
Set WIN COS not warped sets a standard STFT. Since the algorithm
cannot use the FFT, analysis and synthesis for that will be very slow. Set
Start Values sets the parameters for the start-up of the external, so that
nothing goes wrong. The inside of this abstraction is of no big use after-
wards, except for the included command set soundbuffer length factor
which sets the length of the sound buffer as a multiple of the PD block
size (64 samples).

Section 6: Most of the commands are self explanatory. After setting some
value the command initialize must be executed. This is done automat-
ically for all commands in this section. After the use of initialize all
windows are deleted and must be computed again.

set window type sets the used basic window. The raised cosine window
has value 2 and is the only window available.

set theta type sets the used warping map.
Exp cinf, Exp c1, Exp c0, Exp discont all are exponentially in-

creasing functions. They differ in their behaviour around zero,
since the warping map needs to be bijective and odd but e0 = 1.
Cinf is C∞, C1 is C1, C0 is continuous and Discont is discon-
tinuous at zero. Exactly:

· θdiscont(f) =

{
0 if f = 0

σ(f)f02
|f|
d otherwise
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· θC0(f) =

{
2f0
d f if |f | ≤ 2d

σ(f)f02
|f|
d otherwise

· θC1(f) =

{
f0 ln(2)

d f if |f | ≤ d/ ln(2)

σ(f) f0e 2
|f|
d otherwise

· θC∞(f) = σf0(f)2
f2−1
fd

Id is the identity map θid(f) = f .
Lin is the map θlin(f) = f0f .
Square is the map θ2(f) = df2.
The variables f0 and d are parameters.

set compute type sets whether the windows should be computed in the lin-
earised version (1) or not (0).

Section 7: The commands in this section should not be used and are only there
for debugging. They set some parameters directly, but not in a straight
forward way. The window type must not be 2 if one wants to use these
commands.

Section 5: This functions can be used without the need to delete and recom-
pute the windows. Most of them are self explanatory.

set cut ratio sets a parameter of how much the windows should be cut.
The higher the value, the less cutting.

set threaded sets whether multi-threading is used or not. After chang-
ing this value Pure Datas DSP engine must be stopped and started
again.

set no wigwag If this is set, the numerical errors in the windows near
t = 0 are reduced by filtering the windows.

set winlength max sets the maximum length of the windows. This is
useful if a desired maximum latency is required.

Section 8: This section contains commands to get information about the com-
puted windows. This is probably the most useful part of the subpatch.
Most commands expect one parameter denoting the window which is
prompted, again: −1 means all windows.

bang prints all parameters, prints more if double clicked.
array synopsis gives a summary over the windows.
print brand gives a summary over the windows essential bandwidths;

very interesting.
print first and last value prints the first and last value of the window
inner product computes the inner product, takes two parameters which

are the band numbers. −1 is possible in both arguments. inner pro-
duct -1 -1 takes a long time to compute.

length of vector computes
√
〈win(i), win(i)〉 and prints the result in

the PD main window.
send window to array: With this number box one can examine the

computed windows, very comforting.

Section 9: The PD arrays array wabor all and array wabor zoom for contem-
plation with the windows. There is a PD bug resulting in frequently
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crashing PD when closing this patch. If the two arrays are deleted, then
the bug does not arise.

invwabor˜

The invwabor˜ subpatch is self explanatory. There are only three commands
for the invwabor tilde external, namely
set soundbuffer length factor sets the length of the used sound buffer as a

factor of the block size.
set compute synthesis enables or disables the synthesising.
set threaded sets whether multi-threading shall be used or not.
The second sound output is unused. The float inlet is also unused.

welay˜

The same applies for the welay˜ subpatch.

Already known bugs

• Closing a patch which contains an array object can crash Pure Data. (This
is PD Bug.)

• Not all of my functions prove against NULL Pointers before accessing
memory. Nevertheless, normal use of the external will not cause any prob-
lems.

• Sometimes a message must be sent two or three times to the wabor exter-
nals until they accept it.

• Since only one window function is implemented so far, the only admissible
value for set theta type is 2.

• In the main window a lot of error messages may appear. Most of the times
they are meaningless.

• If one uses multi-threading, the alignment of the windows to the signal is
wrong if the sound buffer is full. This leads to a small displacement every
time the buffer is full, thus renders measurements of the error meaningless.
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6.3 Pure Data

Pure Data is an open source visual programming language, mainly written and
maintained by Miller S. Puckette and can be downloaded from:

• https://puredata.info/downloads.

Manuals for Pure Data can be found at:

• https://puredata.info/docs

• https://www.flossmanuals.net/pure-data/

• http://pdstatic.iem.at/

• http://msp.ucsd.edu/Pd documentation/

A good tutorial written by IOhannes m zmölnig about how to write externals
for PD can be found at:

• http://pdstatic.iem.at/ or better, by a search for: HOWTO External Pure
Data.

A guide written by Leonardo/modlfo about how to compile externals with Mi-
crosoft Visual Studio can be found at:

• https://nontranscendentalexistence.wordpress.com/ 2012/ 07/ 27/ develop-
ing-pure-data-extensions-in-visual-studio/

A sample makefile for compiling externals with gcc is:

• CFLAGS := -mms-bitfields -DPD -DVERSION=’0.0’

CFLAGS += -g -g3 -Wall -W

LDFLAGS := -shared -Wl,--enable-auto-import -g -Werror

LDFLAGS += -L./pd/bin -L./fftw

LDFLAGS += wabor_t.o libfftw3-3.dll pd.dll

#-----------------------------------------

all : wabor_t.dll

wabor_t.dll: wabor_t.o

gcc $(LDFLAGS) -o wabor_t.dll

wabor_t.o : wabor_t.c wabor_t.h

gcc $(CFLAGS) -c wabor_t.c -o wabor_t.o
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Wien, den 10. November 2016

81


