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Abstract. We provide a simpler proof for a recent generalization of Nagumo’s
uniqueness theorem and we show that not only is the solution unique but the

successive approximations converge to the unique solution.
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1. Introduction

Nagumo’s remarkable theorem [7] for the Cauchy problem

(1.1) x′(t) = f(t, x(t))

with initial data

(1.2) x(0) = 0,

where a > 0 and f : [0, a] × Rn → Rn is continuous, states that (1.1)-(1.2) has a
unique solution if

(1.3) |f(t, x)− f(t, y)| ≤ |x− y|
t

for t ∈ (0, a] and x, y ∈ Rn with |x|, |y| ≤M for some M > 0. This result improves
considerably the classical Lipschitz condition. Among the various generalizations
that appeared in the research literature, the most far-reaching was recently obtained
in [4]. It states that uniqueness holds if f : [0, a]× Rn → Rn is continuous, with

(1.4)
f(t, x)

u′(t)
→ 0

as t ↓ 0, uniformly in |x| ≤M for some M > 0, and satisfies

(1.5) |f(t, x)− f(t, y)| ≤ u′(t)

u(t)
ω(|x− y|),

for t ∈ (0, a] and x, y ∈ Rn with |x|, |y| ≤ M , where u is an absolutely continuous
function on [0, a] with u(0) = 0 and u′(t) > 0 a.e. on [0, a], and where ω belongs to
the class F of strictly increasing functions ω : [0,∞) → [0,∞) with ω(0) = 0 and
such that

(1.6)

∫ r

0

ω(s)

s
ds ≤ r, r > 0.

Notice that any strictly increasing continuous function ω : [0,∞) → [0,∞) with
ω(s) ≤ s for s ≥ 0 belongs to the class F . There are also functions ω ∈ F for which
ω(rn) > rn for all n ≥ 1, along an appropriate sequence rn ↓ 0 cf. [4].

The object of this note is to give a simpler proof of this uniqueness result and to
show that the hypotheses ensure not only uniqueness but also the convergence of the
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successive approximations. For this we adapt to the present context an approach
that was developed in [1] to deal with the classical Nagumo theorem.

2. Alternative proof of uniqueness

The aim of this section is to provide a simpler proof of the uniqueness result in
[4]. For this, we first derive a useful property of functions in the class F .

Lemma 2.1. If ω ∈ F then ω(s) ≤ e s for s ≥ 0.

Proof. For s > 0 we have

s ≥
∫ s

0

ω(r)

r
dr ≥

∫ s

s/e

ω(r)

r
dr

≥ ω
(s
e

) ∫ s

s/e

1

r
dr = ω

(s
e

)
which yields the statement. �

Remark 2.2. The previous result might seem to indicate that we should simply set
ω(s) = e s in (1.5) and dispense altogether with the class F . However, in Nagumo’s

classical theorem (with u(t) = t and ω(s) = s) the growth of the coefficient
1

t
as

t ↓ 0 is optimal: for any α > 1 there exist continuous functions f satisfying (1.3)
with the right-hand side multiplied by α but for which (1.1)-(1.2) has nontrivial
solutions [1]. Thus replacing ω(s) by s 7→ e s is not an option.

A key role in our approach is the following Gronwall-type integral inequality (see
[2, 5] for the classical Gronwall inequality and [3, 6] for generalizations in directions
different to ours).

Lemma 2.3. Let u : [0, a] → R be absolutely continuous, nondecreasing and such
that u(t) > 0 for t > 0. If v : [0, a] → R is continuous, nonnegative, such that
v(t) = o(u(t)) as t→ 0+, and

v(t) ≤
∫ t

0

ω(v(s))

u(s)
u′(s) ds, 0 < t ≤ a,

for some ω ∈ F , then v must be identically zero.

Proof. From Lemma 2.1 it follows that the integral is well-defined. Assume v is not

the zero function. From v(t)
u(t) → 0 as t → 0+ it follows that there exists 0 < δ ≤ a

such that v(t) ≤ u(t) for 0 < t ≤ δ. Let

ε =
v(t0)

u(t0)
= sup

0<t≤δ

{ v(t)

u(t)

}
> 0

with t0 ∈ (0, δ]. We deduce that

εu(t0) = v(t0) ≤
∫ t0

0

ω(v(s))
u′(s)

u(s)
ds

<

∫ t0

0

ω(εu(s))
u′(s)

u(s)
ds

=

∫ εu(t0)

ε u(0)

ω(r)

r
dr

≤
∫ εu(t0)

0

ω(r)

r
dr ≤ εu(t0),
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which is a contradiction. Thus v is identically zero. �

This enables us to give a simple proof of the main result of [4]:

Theorem 2.4. If f is continuous and satisfies (1.4) and (1.5), then (1.1)-(1.2)
has a unique solution.

Proof. The local existence of a solution is guaranteed by Peano’s theorem [5]. As
for uniqueness, let x(t), y(t) be two solutions of (1.1)-(1.2) for 0 < t ≤ a. In view
of (1.4), given ε > 0, there exists δ = δ(ε) > 0 such that |f(s, x)| ≤ εu′(s) for
0 < s ≤ δ and |x| ≤M . For 0 < t ≤ δ we have

|x(t)− y(t)|

≤
∫ t

0

|f(s, x(s))− f(s, y(s))| ds

≤ 2 ε

∫ t

0

u′(s) ds ≤ 2 ε u(t)

so that |x(t)− y(t)| = o(u(t)) as t→ 0+. Since

|x(t)− y(t)|

≤
∫ t

0

|f(s, x(s))− f(s, y(s))| ds

≤
∫ t

0

u′(s)

u(s)
ω(|x(s)− y(s)|) ds

Lemma 2.3 yields |x(t)− y(t)| ≡ 0. �

3. Convergence of the successive approximations

The successive approximations for the the problem (1.1)-(1.2) are defined by the
sequence of functions

(3.1) xi(t) =

∫ t

0

f(s, xi−1(s)) ds, i ≥ 1,

x0(t) being a continuous function on [0, a] such that x0(0) = 0 and |x0(t)| ≤ M
for 0 ≤ t ≤ a. It turns out that the hypotheses (1.4) and (1.5) guarantee not only
uniqueness but also the convergence of the successive approximations.

Theorem 3.1. If the hypotheses of Theorem 2.4 are satisfied, then there exists a
sufficiently small interval 0 ≤ t ≤ c, c > 0, on which the successive approximations
exist and converge uniformly to the unique solution of (1.1)-(1.2).

Proof. We first prove that the successive approximations {xi(t)} are well defined.
From (1.4) it follows that, given ε > 0, there exists δ = δ(ε) ∈ (0, a] such that

|f(s, x)| ≤ ε

2
u′(s), 0 < s ≤ δ, |x| ≤M.

Then it follows by (1.4) that for t ∈ [0, δ]

|x1(t)| ≤
∫ t

0

|f(s, x0(s))| ds

≤ ε

2

∫ t

0

u′(s) ds ≤ ε

2
u(a).
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Taking

ε :=
2M

u(a)

we obtain

|x1(t)| ≤M for 0 ≤ t ≤ δ.
Suppose now that for j ≥ 1 the continuous function xj−1(t) is well defined on [0, δ]
and satisfies xj−1(0) = 0. We then see that f(t, xj−1(t)) is well defined, continuous

and the integral in (3.1) exists, and its norm does not exceed
ε

2
u(a). This implies

that xj(t) is also continuous and satisfies

xj(0) = 0, |xj(t)| ≤M for 0 ≤ t ≤ δ.
It follows that that the successive approximations are well defined and are uniformly
bounded on [0, δ].

Now we prove that the family {xj(t)} is equicontinuous. Let 0 ≤ t1 < t2 ≤ δ
and j ≥ 1 be given. Then

|xj(t2)− xj(t1)| =
∣∣∣ ∫ t2

t1

f(s, xj−1(s)) ds
∣∣∣

≤
∫ t2

t1

ε u′(s) ds = ε [u(t2)− u(t1)].

From this and the first calculations it follows that {xj(t)} is equicontinuous and
uniformly bounded on [0, δ]. Then by the Arzela-Ascoli theorem, there exists a
subsequence {xjk(t)} which converges uniformly on [0, δ] to a continuous function
g(t) as jk →∞. Since

xjk+1(t) =

∫ t

0

f(s, xjk(s)) ds,

by continuity of f , the sequence {xjk+1(t)} converges uniformly to

g̃(t) =

∫ t

0

f(s, g(s)) ds.

We shall prove that on [0, δ] we have

(3.2) lim
j→∞

|xj+1(t)− xj(t)| = 0.

By (3.1) this yields g(t) = g̃(t) on [0, δ]. This means that g(t) is a solution of
the equation. Since this solution is unique by Theorem 2.4, every subsequence of
{xj(t)} which is convergent will tend to the same solution g(t), and this shows that
{xj(t)} converges to g(t) on [0, δ]. Because of the uniform boundedness and the
equicontinuity of the sequence this convergence is uniform.

To prove (3.2) we define on [0, δ] the functions

yj(t) := |xj+1(t)− xj(t)| , j ≥ 1,

m(t) := sup
0≤s≤t

|x2(s)− x1(s)|
u(s)

,

z1(t) := m(t)u(t).

Then for t ∈ [0, δ] we have

0 ≤ m(t) ≤ ε
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so that

0 ≤ z1(t) ≤ ε u(t).

Also

yj(t) = |xj+1(t)− xj(t)|

≤
∫ t

0

|f(s, xj(s))− f(s, xj−1(s)))| ds

≤ ε
∫ t

0

u′(s) ds ≤ εu(t),

while

y1(t) ≤ sup0≤s≤t

{ |x2(s)− x1(s)|
u(s)

}
u(t)

= m(t)u(t) = z1(t).

Define now on [0, δ] the functions zj with j ≥ 1 as follows:

zj+1(t) :=

∫ t

0

u′(s)

u(s)
ω(zj(s)) ds.

Since 0 ≤ z1(t) ≤ εu(t) and u′ ∈ L1[0, a], the function z2 is continuous on [0, δ]
with

0 ≤ z2(t) ≤
∫ t

0

u′(s)

u(s)
ω(εu(s)) ds

=

∫ εu(t)

εu(0)

ω(r)

r
dr ≤ ε u(t).

By induction we show that for j ≥ 1

(3.3) 0 ≤ zj(t) ≤ ε u(t), t ∈ [0, δ].

On the other hand,

y2(t) = |x3(t)− x2(t)|

≤
∫ t

0

|f(s, x2(s))− f(s, x1(s))| ds

≤
∫ t

0

u′(s)

u(s)
ω(y1(s))

≤
∫ t

0

u′(s)

u(s)
ω(z1(s)) = z2(t),

and by induction one gets for j ≥ 1 and t ∈ [0, δ] that

(3.4) yj(t) = |xj+1(t)− xj(t)| ≤ zj(t).

We now prove by induction that for j ≥ 1 and t ∈ [0, δ] we have

(3.5) 0 ≤ zj+1(t) ≤ zj(t).
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Indeed,

z1(t)− z2(t)

= z1(t)−
∫ t

0

u′(s)

u(s)
ω(z1(s)) ds

= z1(t)−
∫ t

0

u′(s)

u(s)
ω(m(s)u(s)) ds

≥ z1(t)−
∫ t

0

u′(s)

u(s)
ω(m(t)u(s)) ds

= z1(t)−
∫ m(t)u(t)

m(t)u(0)

ω(r)

r
dr

≥ z1(t)−
∫ m(t)u(t)

0

ω(r)

r
dr

≥ z1(t)− z1(t) = 0.

Now assume

zj(t) ≤ zj−1(t), t ∈ [0, δ].

Then

zj+1(t) =

∫ t

0

u′(s)

u(s)
ω(zj(s)) ds

≤
∫ t

0

u′(s)

u(s)
ω(zj−1(s)) ds = zj(t)

throughout [0, δ].
From (3.5) we infer that on [0, δ] the sequence {zj(t)} is decreasing and has a

limit z(t) ≥ 0 as j →∞. By Lebesgue’s dominated convergence theorem we get

z(t) = lim
j→∞

zj+1(t)

= lim
j→∞

∫ t

0

u′(s)

u(s)
ω(zj(s)) ds

=

∫ t

0

lim
j→∞

{u′(s)
u(s)

ω(zj(s))
}
ds

=

∫ t

0

u′(s)

u(s)
ω( lim
j→∞

zj(s)) ds

=

∫ t

0

u′(s)

u(s)
ω(z(s)) ds.

Since z(t) = o(u(t)) for t ↓ 0 cf. (3.3), by Lemma 2.1 it follows that z ≡ 0. From
this and (3.4) we deduce (3.2) and the proof is complete. �
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